Изменить размер шрифта - +
Если первоначальный выбор комбинаций неверен, решение задачи усложняется. В случае с блоками альтернатив так много, что вы не знаете, с чего начать.

Любой подход кажется вам правильным. Хотя не все шаги еще ясны, вы чувствуете себя на верном пути. Если он все же приводит в тупик, вы вскоре находите новый. Энтузиазм не покидает вас: очередная альтернатива кажется вам единственно верной. Так случается всякий раз с каждым новым подходом.

В какой-то момент вам может показаться, что все ваши усилия решить задачу с блоками, лежащими на столе, напрасны. Вдруг вас осеняет: блоки должны не лежать, а стоять! Возможно, в этом новом подходе и кроется успех. Пока нет никаких доводов «за», но новизна этой идеи обнадеживает вас. Многим кажется, что рассматриваемые задачи не могут быть решены простым, очевидным путем, поэтому оригинальная идея поставить блоки вертикально приобретает особую ценность.

Однажды я наблюдал, как один мой знакомый решает всю серию задач, размещая блоки вертикально. Это не дало ему никаких преимуществ. Дело в том, что он пользовался блоками несколько необычной формы: более высокими и узкими. С такими блоками можно делать то же, что и с обыкновенными плоскими, но они менее удобны. Этот пример показывает опасность неадекватного подхода к решению задачи. Такой подход, дающий, хотя и с большим трудом, нужное решение, может стать привычным. Очень редко люди отказываются от проверенного метода в пользу другого, эффективность которого еще нужно доказать. Так ранний успех может оказаться вредным по существу.

Надеюсь, обсуждение столь оригинального размещения блоков не заставит вас полностью от него отказаться, особенно если в определенной ситуации оно сулит вам успех. Несмотря на приведенные выше комментарии, новизна идеи – достаточный довод в пользу ее апробации.

 

Решение задачи 3

 

Комбинация, изображенная на рис. 13, непосредственно следует из решения предыдущей задачи (см. рис. 11), полученного, в свою очередь, из анализа первой. Во всех трех решениях использованы группы из трех блоков. В этом и состоит общий подход ко всем задачам. Его можно назвать главным принципом или правилом.

Решение третьей задачи можно вывести из решения второй чисто логическим путем. Возможно, вы так и сделали или, по крайней мере, пытались.

В предыдущем случае каждый блок касался двух соседних в горизонтальной плоскости и одного соседнего – но в вертикальной. Чтобы удовлетворить требования задачи 3, нужно, чтобы каждый блок касался двух других в обеих плоскостях. Именно это и достигнуто в решении задачи 3, показанном на рис. 12.

Я же использовал решение предыдущей задачи менее логичным, но, как мне кажется, более оригинальным способом. Чтобы решить задачу 3, я проанализировал вторую и задал себе вопрос: что произойдет, если переместить три верхних блока? Когда я так и сделал, задача неожиданно оказалась решенной. Это было скорее игрой случая. Те, кто не пренебрег группированием блоков по два, вероятно, пришли к решению, показанному на рис. 14. Сразу бросается в глаза, что два боковых блока расположены вертикально. Это решение можно получить несколькими подходами, один из которых будет описан ниже.

Чтобы каждый блок касался четырех других, необходимо расположить четыре блока компактной группой, как на рис. 12, а затем поставить пятый на их крестообразное соединение. В этой незаконченной комбинации из пяти блоков один из них касается четырех других, а четыре – трех блоков. Следующий очевидный шаг – поместить шестой блок снизу, под «крестом». Таким образом, он будет иметь четыре плоскости касания. К сожалению, такая конструкция неустойчива, что противоречит условию задачи. Поэтому необходимо перестроить комбинацию по вертикали, как показано на рис. 14. Если теперь посмотреть на нее сбоку, то можно увидеть, что вертикально стоящие блоки «прикрывают» группу из четырех блоков с двух сторон.

Быстрый переход