– Могу я чем-нибудь помочь, мистер Сомс?
– …Приготовить нам чай, – вздохнул великий детектив.
Загадки разгаданные
или, если не разгаданные, то рассмотренные в свете разнообразных выдержек из обширного архива доктора Джона Ватсапа, содержащего заметки по делам, газетные вырезки и всевозможные памятные вещицы, связанные с Сомсом; с отдельными вставками из других источников.
Скандал с украденным совереном
С лупой в руке Сомс тщательно осмотрел каждый сантиметр на кухнях и в бухгалтерских книгах «Глитца». Он велел поднять все ковры, чтобы посмотреть, нет ли чего под ними, – в результате набралась замечательная коллекция, не имеющая, однако, отношения к нашей истории, – и обыскал тесную комнатушку Мануэля в мансарде. Он взял пробу с содержимого нескольких бутылок в баре. На самом деле он сделал выводы даже раньше, чем его светлость успел закончить описание фактической стороны дела, но не годится, чтобы процесс расследования выглядел слишком простым в глазах непосвященных, а от возможности бесплатно получить некоторое количество первоклассного виски не следует отказываться без веских причин.
Владелец отеля «Глитц», ожидавший Сомса в великолепно обставленной личной гостиной, вышагивал из угла в угол и сверкал глазами.
– Нашли вы мой украденный соверен, Сомс?
– Нет, милорд.
– Тьфу! Я так и знал! Лучше мне было обратиться к мистеру Шер…
– Я ничего не нашел, потому что не было никакого украденного соверена. Он вообще никуда не пропадал.
– Но 27 фунтов и 2 фунта в сумме не дают 30 фунтов!
– Согласен. Но они и не должны их давать. Суммы сходятся, если их правильно считать.
И Сомс написал:
– Сумма в 30 фунтов, по существу, больше не должна рассматриваться, – сказал Сомс. – В конце концов, это был неправильный счет. В результате мужчины заплатили 27 фунтов, милорд, и нам следует вычесть из этой суммы 2 фунта, чтобы получить те 25, которые они были должны отелю. Вычесть, а не прибавить.
– Но…
– Ваш первоначальный расчет на первый взгляд казался вполне разумным, поскольку числа 29 и 30 так близки между собой. Но представьте, к примеру, что счет на самом деле составлял бы 5 фунтов, и официант получил бы 25 фунтов, которые следовало вернуть клиентам; он оставил бы себе 1 соверен, а гостям раздал по 8 монет. В этом случае приятели заплатили бы по 2 фунта каждый, то есть всего 6 фунтов. Мануэль, как мы уже сказали, оставил себе всего 1 фунт. В сумме эти два числа дают 7 фунтов. После этого вы бы спросили, куда делись остальные 23 фунта. Но ведь сумма настоящего счета была 5 фунтов, и отель получил ее в точности. Как же могут 23 фунта пропасть из кассы отеля? Их получили трое клиентов, уступившие при этом небольшую часть суммы Мануэлю.
Хампшоу-Смэттеринг порозовел:
– Хм, – произнес он. – Вот ведь…
Он взял себя в руки.
– Ваш гонорар, сэр?
– Двадцать девять соверенов, – ответил Сомс не моргнув глазом.
Числовая диковинка
1001
100001
10000001
1000000001
100000000001
100000000000000001
Я спрашивал также, почему так получается. Это более сложный вопрос, потому что здесь нужно думать, а не просто вычислять. Вместо формального доказательства рассмотрим типичный случай: 11 × 909091. Для начала перепишем этот пример в обратном порядке: 909091 × 11. Это равно 909091 × 10 + 909091 × 1; то есть 9090910 + 909091. |