То же можно сказать и об остальных отражениях. Таким образом, все комбинации нескольких отражений представляют собой произведения вроде такого:
r<sub>1</sub>r<sub>4</sub>r<sub>3</sub>r<sub>4</sub>r<sub>2</sub>r<sub>1</sub>r<sub>3</sub>r<sub>1</sub>,
где последовательность индексов 14342131 может быть любой последовательностью чисел 1, 2, 3, 4, где ни одно число не встречается два раза подряд. К примеру, последовательности 14332131 быть не может. Причина в том, что здесь r<sub>3</sub>r<sub>3</sub> – это одно и то же отражение, проделанное дважды, то есть e, которое не производит никакого действия и потому может быть исключено.
Если такая цепочка замыкается, то очередное отражение, примененное к крайнему тетраэдру в цепочке, дает тетраэдр, который совпадает с первоначальным. Таким образом, мы получаем уравнение вида
r<sub>1</sub>r<sub>4</sub>r<sub>3</sub>r<sub>4</sub>r<sub>2</sub>r<sub>1</sub>r<sub>3</sub>r<sub>1</sub> = e
(только более длинное и сложное), где e означает «ничего не делать». Записав формулы для четырех отражений и воспользовавшись подходящими алгебраическими методами, можно доказать, что такое уравнение не выполняется никогда. Подробности см.:
T. J. Dekker, On reflections in Euclidean spaces generating free products, Nieuw Archief voor Wiskunde 7 (1959) 57–60.
M. Elgersma and S. Wagon, Closing a Platonic gap, Mathematical Intelligencer in the press.
J. H. Mason, Can regular tetrahedrons be glued together face to face to form a ring? Mathematical Gazette 56 (1972) 194–197.
H. Steinhaus, Problem 175, Colloquium Mathematicum 4 (1957) 243.
S. Swierczkowski, On a free group of rotations of the Euclidean space, Indagationes Mathematicae 20 (1958) 376–378.
S. Swierczkowski, On chains of regular tetrahedra, Colloquium Mathematicum 7 (1959) 9–10.
Невозможный маршрут
– Как вы правильно сказали, вы их не видите, – сказал Сомс. – Вы же знаете мои методы: воспользуйтесь ими.
– Очень хорошо, Сомс, – ответил я. – Вы всегда говорили, что нужно отбросить все несущественное. Поэтому я повторю свои рассуждения, а чтобы устранить всякую мыслимую возможность ошибки, представлю задачу в простейшем виде. Я пронумерую области на карте – вот так. Их пять. Затем я нарисую диаграмму – кажется, она называется графом, – на которой схематически покажу эти области и связи между ними.
Он молчал с непроницаемым выражением лица.
– Мы должны попасть из области 1 в область 5, причем мост A должен быть последним. Если начинать из 1, единственным оставшимся вариантом будет пересечь мост B, затем неизбежно последуют C и D. Далее мы должны воспользоваться мостом E или F. Скажем, мы выбрали мост E. Далее мы не можем воспользоваться F, потому что это приведет нас в область 4, из которой далее пути для нас нет. Однако мы не можем воспользоваться и мостом A, потому что это приведет нас в область 1, из которой пути нет. То же произойдет, если мы выберем F вместо E. Я закончил.
– Почему, Ватсап?
– Потому, Сомс, что я исключил невозможное, – он поднял бровь. – Поэтому то, что останется, каким бы невероятным оно ни казалось, – продолжал я, – должно быть…
– Продолжайте.
– Но, Сомс, ничего не остается! Следовательно, задача не имеет решения!
– Неверно. Я уже сказал вам, что решений здесь восемь. |