Изменить размер шрифта - +
Нам нужно разделить числа от 0 до 7 на две группы – так, чтобы сумма чисел в каждой из них равнялась 14.

– Если мы знаем один такой набор, то второй определяется автоматически и тоже дает сумму 14.

– Да, Ватсап, это очевидно: просто берем числа, которые не вошли в первый набор.

– Я согласен, что это тривиально, Сомс, но это подразумевает, что мы можем использовать набор, содержащий 0; это означает, что заднее весло мы размещаем слева (при необходимости мы всегда можем взять зеркально симметричный вариант). Таким образом мы снижаем число вариантов, которые необходимо рассмотреть.

– Это правда.

Теперь рассуждения шли практически сами собой.

– Если в набор входит также 1, – заметил я, – то остальные два числа в сумме дают 13, так что это должны быть 6 и 7, что дает 0167. Если там нет 1, но есть 2, то единственный возможный вариант – 0257. Если вариант начинается с 03, возникает два следствия: 0347 и 0356. Вариант, начинающийся с 04, можно не рассматривать, поскольку получить 10 сложением двух чисел из 5, 6, 7 невозможно. Аналогично отвергаем 05, 06 и 07.

– Итак, вы пришли к выводу, – подвел итог Сомс, – что единственные возможные варианты, исключая симметрию право-лево, – это

 

0167 0257 0356 0347

 

Но 0257 – это немецкий вариант, а 0347 – итальянский. Остаются два, те самые, что выложил из спи…

Он внезапно вскочил и напрягся.

– Святые угодники!

– Что, Сомс?

– Мне только что пришло в голову, Ватсап, извините за каламбур, что эта спичка… – он помахал передо мной какой-то горелой спичкой… – это не редкая ранняя спичка Конгрива, как я воображал, но одна из бесшумных спичек Ирини. Когда подорвался его профессор химии, Ирини пришло в голову заменить бертолетову соль в головке спички двуокисью свинца.

– Ах. Это имеет значение, Сомс?

– Еще какое, Ватсап. Это позволяет пролить совершенно новый свет… опять же, извините за каламбур… на одно из самых невероятных наших нераскрытых дел.

– Замечательное дело перевернутого чайника! – воскликнул я.

– Вот именно, Ватсап! Итак, если в ваших записях сохранилась информация о том, справа или слева от мумифицированного попугая лежала та спичка…

Анализ Сомса основан на:

Maurice Brearley, 'Oar arrangements in rowing eights', in Optimal Strategies in Sports (ed. S. P. Ladany and R. E. Machol), North-Holland 1977.

John Barrow, One Hundred Essential Things You Didn't Know You Didn't Know, W. W. Norton, New York 2009.

Как и предупреждал Сомс, это лишь первоначальный упрощенный подход к весьма сложной проблеме.

Кстати говоря, Университетская гонка 1877 г. закончилась ничьей – единственный случай в истории этих состязаний.

 

Кольца из правильных многогранников

 

Джон Мейсон и Теодорус Деккер нашли более простые методы доказательства невозможности, чем те, которыми пользовался Сверчковский. При склеивании двух одинаковых тетраэдров гранями каждый из них становится как бы отражением другого в их общей грани.

 

 

Начнем с одного тетраэдра. У него четыре грани и, соответственно, четыре таких отражения; назовем их r<sub>1</sub>, r<sub>2</sub>, r<sub>3</sub> и r<sub>4</sub>. Каждое отражение ставит все на прежнее место, если проделать операцию дважды, так что r<sub>1</sub>r<sub>1</sub> = e, где e – это нулевая трансформация («ничего не делать»).

Быстрый переход