Изменить размер шрифта - +

Стихи, посвященные числу π, называют пиэмами. 32-й знак π равен 0, а слово нулевой длины вставить невозможно. Однако существуют способы обойти это препятствие. В пилише – кодовой системе, обычно используемой для π-мнемоники, за 0 считается десятибуквенное слово. Майк Кейт в «Автореферентной истории» использовал другой набор правил. Это, насколько мне известно, самый длинный образец на сегодняшний день («Книга рекордов Гиннесса» мне свидетель) – это «Cadaeiccadenza» (3834 знака) и книга «NotAWake» (10 000 знаков) того же Кейта. Книга начинается так:

Здесь десятибуквенные слова считаются за 0, а более длинные – за два знака; к примеру, 13-буквенное слово обозначает 13.

На сайте Кейта вы сможете найти огромное количество дополнительной информации и примеров.

 

Без улик

Из мемуаров доктора Ватсапа

 

Листая потрепанные страницы своих записных книжек, я вспоминаю бесчисленные загадки, которые Сомс решал, обращая внимание на улики столь тонкие, что они успешно ускользали от внимания менее острых умов. В памяти всплывают такие дела, как приключение суссекского эмпайра (замечательная таинственная история спортивной раздевалки, решающую роль в разгадке которой сыграл слишком быстро истершийся мяч для крикета), история коровы со сломанным рогом, покушение на тройное убийство подсвинка и дело о пропавшем пироге. Однако среди этих дел одно стоит особняком: это загадка, единственным ключом к которой служило полное отсутствие каких бы то ни было зацепок и улик.

Дело происходило в мокрый пасмурный вторник, когда улицы Центрального Лондона были заполнены густой смесью дыма и тумана. Мы отказались на некоторое время от активного преследования преступников ради раздумий у теплого огня в компании объемистых бокалов вездесущего и даже немного надоевшего кларета.

– Послушайте, Сомс, – заметил я.

Мой коллега перебирал толстую стопку фотографических пластинок, запечатлевших отпечатки копыт в грязи и полученных с использованием нового, улучшенного Истманом желатинового процесса Мэддокса. Его единственной реакцией на мое восклицание стало раздраженное:

– Вы нигде не видели моей коллекции фотографий упряжных лошадей, Ватсап?

Однако я человек упрямый.

– В этом деле нет ни одной зацепки, Сомс.

– Оно такое не одно, – мрачно пробормотал он.

– Нет, я имею в виду… вообще никаких указаний, ни одной улики.

Вот теперь мои слова его наконец заинтересовали, я ясно это видел. Он взял газету из моей протянутой руки и взглянул на диаграмму.

 

 

– В данном случае правила очевидны, Ватсап, хотя их здесь и нет.

– Почему?

– Они должны быть достаточно простыми, чтобы мотивировать читателя к разгадыванию загадки, но создавать при этом достаточно сложную задачу, способную удержать интерес.

– Несомненно. Так какие же здесь правила, Сомс?

– Ясно, что в каждой строке и в каждом столбце должны содержаться числа 1, 2, 3 и 4 ровно по одному разу каждое.

– Ах! Так это комбинаторная задачка, разновидность латинского квадрата.

– Да, но этого мало. Очевидно, что важны также две области, разграниченные жирной черной линией. Я предполагаю, что числа в той и другой области при сложении должны давать одинаковую сумму… Да, тогда решение будет единственным.

– Ага! Интересно, какое это решение.

– Вы же знаете мои методы, Ватсап. Воспользуйтесь ими, – и он вернулся к рассматриванию фотографических пластинок.

 

Ответ см. в главе «Загадки разгаданные». Если вас заинтересовали задачи без указаний, то их дополнительные примеры вы найдете в главе «Дверца страха».

Быстрый переход