Единственное действие, которое вам разрешается производить, – это вставить условную лопаточку под один из блинов стопки, поднять стопку, которая оказалась сверху, и перевернуть ее целиком. Вы можете повторять эту операцию столько раз, сколько потребуется, и произвольно выбирать место, куда вставлять лопаточку.
Приведем пример с четырьмя блинами. Для их упорядочивания требуется три переворота.
Вот несколько вопросов для вас.
1. Любую ли стопку из четырех блинов можно упорядочить не более чем за три переворачивания?
2. Если нет, то каково наименьшее число переворачиваний, при помощи которых можно упорядочить любую стопку из четырех блинов?
3. Определите для n-го блина число Pn – наименьшее число переворачиваний, при помощи которых можно упорядочить любую стопку из n блинов. Докажите, что Pn всегда конечно. То есть что любую стопку блинов можно упорядочить при помощи конечного числа переворачиваний.
4. Найдите P<sub>n</sub> для n = 1, 2, 3, 4, 5. Я остановился на n = 5, потому что здесь мы уже имеем 120 различных вариантов стопки, все из которых нужно рассмотреть, а это, говоря откровенно, уйма работы.
Ответы на вопросы, а также то, что еще известно об этой задаче, см. в главе «Загадки разгаданные».
Фокус с суповой тарелкой
В продолжение кулинарной темы существует забавный фокус, который вы можете проделать с суповой тарелкой или другим похожим предметом. Начните с того, что поставьте тарелку на пальцы примерно так, как это делает официант, подавая кушанья. Затем объявите зрителям, что вы сейчас проделаете поразительный трюк: сделаете полный круг рукой, все время удерживая тарелку в горизонтальном положении.
Для этого сначала заверните руку внутрь – так чтобы тарелка оказалась примерно под мышкой. Затем продолжайте двигать тарелку по кругу, но руку поднимите над головой. Все естественным образом повернется в исходную позицию, и тарелка не упадет, несмотря на то что вы ее не придерживаете.
Видео трюка с тарелкой (суповой) можно найти в Интернете, к примеру на сайте
,
где его называют балийским трюком с чашей и связывают с балийским танцем, где вместо тарелки используется чаша с жидкостью. Аналогичный филиппинский танец, где задействованы винные бокалы (по два на человека, по одному в каждой руке), можно увидеть на YouTube по адресу
Движение руки при исполнении трюка может показаться достаточно простым, но имеет глубокий математический смысл. В частности, оно помогает специалистам по физике элементарных частиц разобраться в одном из любопытных квантовых свойств, который называют спином. В действительности квантовые частицы не вращаются на самом деле, как шарик на пальце жонглера, но существует число, которое называется «спин» и в определенном смысле обозначает что-то похожее. Спин может быть положительным и отрицательным, что аналогично вращению по часовой стрелке или против нее. У некоторых частиц спин выражается целым числом; эти частицы называются бозонами (помните охоту на бозон Хиггса?). Другие, что куда более необычно, имеют полуцелые спины, такие как 1/2 или 3/2. Такие частицы называются фермионами.
Половинки спина возникают благодаря одному очень странному явлению. Если взять частицу со спином 1 (или любым другим целым спином) и повернуть ее в пространстве на 360°, она окажется в прежнем состоянии. Но если взять частицу со спином ½ и повернуть ее в пространстве на 360°, то спин ее превратится в −½. Нужно повернуть частицу на 720°, на два полных оборота, чтобы получить прежний спин.
Математический смысл всего этого заключается в том, что существует «группа преобразований» под названием SU (2), которая описывает спин и действует путем преобразования квантовых состояний, и другая группа SO (3), которая описывает вращения в пространстве. |