Ее часто называют «фиктивной силой», несмотря на то, что действие она оказывает самое настоящее.
В 1765 году Эйлер доказал, что в такой модели можно добиться, чтобы все три тела двигались по круговым орбитам в соответствии с законом всемирного тяготения, приклеив пылинку на той же самой прямой, что и два других тела. В этой точке гравитационные силы со стороны Земли и Луны в точности компенсируются центробежной силой, которую испытывает пылинка. Мало того, Эйлер нашел три такие точки. Одна из них (в настоящее время мы называем ее L<sub>1</sub>) лежит между Землей и Луной. L<sub>2</sub> располагается за Луной, если смотреть на нее с Земли; L<sub>3</sub> лежит по ту сторону Земли, если смотреть на нее с Луны.
В обозначениях этих точек используется буква L, а не E, как можно было ожидать, потому что в 1772 году Лагранж нашел еще две возможные локации для пылинок. Они лежат не на линии Земля — Луна, а в вершинах двух равносторонних треугольников, двумя другими углами которых являются Земля и Луна. В этих точках пылинка остается неподвижной относительно Земли и Луны. Точка Лагранжа L<sub>4</sub> располагается на 60° впереди Луны, а L<sub>5</sub> — на 60° позади. Лагранж доказал, что для любых двух тел существует ровно пять таких точек.
Радиусы орбит, соответствующих точкам L<sub>4</sub> и L<sub>5</sub>, в общем случае отличаются от радиусов орбит двух других тел. Однако если одно из этих тел много массивнее другого (к примеру, если это Солнце, а другое тело — планета), то общий центр масс и более массивное тело почти совпадают. В этом случае орбиты, соответствующие L<sub>4</sub> и L<sub>5</sub>, почти совпадают с орбитой менее массивного тела.
Геометрию точек Лагранжа можно вывести из выражений для энергии пылинки. Энергия эта состоит из кинетической (пылинка вращается вместе с поворотной площадкой) и потенциальной (связанной с гравитационным притяжением Земли и Луны) составляющих. На рисунке полная энергия пылинки показана двумя способами: в виде изогнутой поверхности, высота которой представляет полную энергию, и в виде системы горизонталей — кривых, во всех точках которых энергия постоянна. Поверхность можно рассматривать как некий гравитационный ландшафт. Пылинка может двигаться по этому ландшафту, но до тех пор, пока на нее не подействует какая-нибудь дополнительная сила, закон сохранения энергии требует, чтобы она оставалась на одной горизонтали. В общем, она может двигаться вбок по склону холма, но не вниз и не вверх.
Если «линия» горизонтали представляет собой одну-единственную точку, пылинка будет находиться в равновесии — она останется в той точке поворотной площадки, куда вы ее поместите. Существует пять таких точек, на рисунке с горизонталями они обозначены как L<sub>1</sub> — L<sub>5</sub>. В точках L<sub>1</sub>, L<sub>2</sub> и L<sub>3</sub> энергетическая поверхность имеет форму седла: в одних направлениях она уходит вниз, в других — вверх. Точки L<sub>4</sub> и L<sub>5</sub>, напротив, располагаются на вершинах энергетического ландшафта. Важная разница между одними и другими точками состоит в том, что вершины (и локальные впадины, которых здесь нет) окружены небольшими замкнутыми горизонталями, очень близкими к собственно верхушке пика. В седловинах не так: горизонтали вблизи любой точки уходят прочь, и хотя, возможно, когда-нибудь где-нибудь замыкаются, но делают это не сразу и далеко не рядом.
Если пылинку чуть сдвинуть с точки Лагранжа, она окажется на одной из ближайших к ней горизонталей и будет по ней двигаться. В случае седловидной поверхности любая такая горизонталь уведет объект далеко от первоначальной позиции. К примеру, если пылинка, находясь в точке L<sub>2</sub>, чуть сдвинется вправо, она попадет на громадную замкнутую горизонталь, которая уведет ее далеко-далеко, вокруг Земли, за точку L<sub>3</sub> на дальней стороне планеты. |