Изменить размер шрифта - +
Однако хаос не ограничивается исключительно нашим небесным домом. Расчеты показывают, что многие экзопланеты у далеких звезд, вероятно, движутся по хаотическим орбитам. Существует и астрофизический хаос: светимость некоторых звезд изменяется хаотически. Движение звезд в галактиках тоже вполне может быть хаотичным, хотя астрономы при моделировании и рисуют им обычно круговые орбиты (см. главу 12).

Хаос, судя по всему, правит космосом. Тем не менее астрономы обнаружили, что чаще всего основной причиной хаоса являются резонансные орбиты, простые числовые закономерности — такие как люк Кирквуда с его резонансом 3:1. В то же время хаос порождает закономерности — примером тому, вполне возможно, служат спирали галактик, как мы это увидим в главе 12.

Порядок порождает хаос, а хаос порождает порядок.

 

* * *

У систем, основанных на случайности, нет памяти. Если вы бросите игральную кость дважды, результат первого броска ничего не скажет вам о том, что произойдет при втором. Может, выпадет то же число, а может, и нет. Не верьте тому, кто попытается убедить вас, что если в данной серии бросков давно не выпадала шестерка, то некий «закон средних чисел» делает ее выпадение более вероятным. Такого закона не существует. Действительно, в долговременном плане доля шестерок в бросках правильной игральной кости должна быть очень близка к 1/6, но это происходит потому, что любые нарушения тонут в большом количестве новых бросков, а не потому, что кость вдруг решает подправить результат и свести его к теоретически предсказанному среднему значению.

Хаотические системы, напротив, обладают своеобразной кратковременной памятью. То, чем они занимаются в настоящий момент, намекает на то, что они будут делать через некоторое небольшое время. Забавно, но если бы игральные кости были хаотичны, то невыпадение шестерки на протяжении долгого времени означало бы, что она, вероятно, не выпадет в ближайшее время. В поведении хаотических систем присутствует множество приблизительных повторений, поэтому прошлое может служить разумным — хотя далеко не гарантированным — ориентиром для оценки ближайшего будущего.

Длительность периода времени, для которого подобные предсказания имеют смысл, называется горизонтом предсказуемости (есть специальный термин: время Ляпунова). Чем точнее вы знаете текущее состояние хаотической динамической системы, тем длиннее становится горизонт предсказуемости, но горизонт отдаляется намного медленнее, чем растет точность измерений. Какими бы точными они ни были, малейшая ошибка в оценке нынешнего состояния со временем возрастет настолько, что собьет всякое предсказание. Метеоролог Эдвард Лоренц открыл эту закономерность на простой погодной модели, но то же самое верно и в отношении сложных погодных моделей, используемых в настоящее время синоптиками. Движение атмосферы подчиняется вполне конкретным математическим правилам, в которых нет места случайности, тем не менее все мы знаем, какими ненадежными становятся прогнозы погоды всего через несколько дней.

Это и есть знаменитый (и зачастую понимаемый неверно) эффект бабочки Лоренца: взмах крыла бабочки может месяцем позже вызвать ураган где-то на другом конце света.

Если вы считаете, что это звучит неправдоподобно, я вас не виню. Это соответствует истине, но только в очень специфическом смысле. Главным потенциальным источником непонимания здесь служит слово «вызвать». Трудно понять, как из крохотного количества энергии, заключенного во взмахе крыла, может родиться громадная энергия урагана. Ответ заключается в том, что ничего подобного на самом деле не происходит. Энергия урагана не исходит из взмаха крыла: она поступает из других источников и перераспределяется, когда крыло взаимодействует с остальной, неизменной в других отношениях погодной системой.

После взмаха крыла мы не получаем в точности ту же погоду, что и до взмаха, но с лишним ураганом.

Быстрый переход