Однако условия на поверхности белого карлика и нейтронной звезды сильно отличаются, и поэтому рентгеновские барстеры однозначно связываются именно с нейтронными звездами. Термоядерные взрывы наблюдаются нами в виде рентгеновских вспышек и, быть может, гамма-всплесков. И действительно, некоторые гамма-всплески могут быть, по всей видимости, обусловлены термоядерными взрывами на поверхности нейтронных звезд.
Но вернемся к рентгеновским пульсарам. Механизм их излучения, естественно, совершенно иной, нежели у барстеров. Ядерные источники энергии здесь уже не играют никакой роли. Кинетическая энергия самой нейтронной звезды также не может быть согласована с данными наблюдений.
Возьмем для примера рентгеновский источник Центавр Χ-1. Его мощность составляет 10<sup>37</sup> эрг/сек. Стало быть, запаса этой энергии могло бы хватить только на один год. Кроме того, вполне очевидно, что период вращения звезды в этом случае должен был бы увеличиваться. Однако у многих рентгеновских пульсаров в отличие от радиопульсаров период между импульсами со временем уменьшается. Значит, здесь дело не в кинетической энергии вращения. Как же работают рентгеновские пульсары?
Мы помним, что проявляются они в двойных системах. Именно там процессы аккреции особенно эффективны. Скорость падения вещества на нейтронную звезду может достигать одной трети скорости света (100 тысяч километров в секунду). Тогда один грамм вещества выделит энергию 10<sup>20</sup> эрг. А чтобы обеспечить энерговыделение в 10<sup>37</sup> эрг/сек, необходимо, чтобы поток вещества на нейтронную звезду составлял 10<sup>17</sup> граммов в секунду. Это, в общем-то, не очень много, около одной тысячной массы Земли в год.
Поставщиком материала может быть оптический компаньон. С части поверхности его по направлению к нейтронной звезде будет непрерывно течь струя газа. Она и будет снабжать и энергией, и веществом аккреционный диск, образующийся вокруг нейтронной звезды.
Поскольку у нейтронной звезды огромное магнитное поле, газ будет «стекать» по магнитным силовым линиям к полюсам. Именно там, в сравнительно небольших «пятнах» размером порядка всего лишь одного километра, разыгрываются грандиозные по своим масштабам процессы рождения мощнейшего рентгеновского излучения. Излучают рентген релятивистские и обычные электроны, движущиеся в магнитном поле пульсара. Падающий на него газ может и «подпитывать» его вращение. Поэтому-то именно у рентгеновских пульсаров наблюдается в ряде случаев уменьшение периода вращения.
Рентгеновские источники, входящие в двойные системы, — одно из самых замечательных явлений в космосе. Их немного, вероятно, не более сотни в нашей Галактике, но значение их огромно не только с точки зрения звездной эволюции, в частности для понимания взрывов сверхновых I типа. Двойные системы обеспечивают наиболее естественный и эффективный путь перетекания вещества от звезды к звезде, и именно здесь (за счет сравнительно быстрого изменения массы звезд) мы можем столкнуться с различными вариантами «ускоренной» эволюции.
Еще одно интересное соображение. Мы знаем, как трудно, практически невозможно оценить массу одиночной звезды. Но поскольку нейтронные звезды входят в двойные системы, может оказаться, что рано или поздно удастся эмпирически (а это чрезвычайно важно!) определить предельную массу нейтронной звезды, а также получить прямую информацию о ее происхождении.
Черные дыры
В 1783 году Английское королевское общество заслушало парадоксальный доклад Д. Митчелла, священника, — занимавшегося еще и вопросами сейсмологии. Он утверждал, что если бы на месте Солнца находилась звезда такой же плотности, но с радиусом в 500 раз больше, чем у нашего светила, световые лучи не могли бы покинуть поверхность такой звезды. |