Изменить размер шрифта - +

В окрестностях такого объекта происходят поистине удивительные вещи. Пространство-время настолько искажено чудовищным тяготением, что обычная эвклидова геометрия оказывается здесь несправедливой. Параллельные прямые могут пересекаться, сумма углов треугольника не равна двум прямым, мы переходим в область новой неэвклидовой геометрии. Более того, наблюдая окрестности черной дыры, мы видим, как начинают замедляться все процессы.

В окрестностях такого объекта само время, казалось бы, вечная и неизменная философская и физическая категория, начинает течь по-другому, замедляется. Заметим — и это очень важно, — что течение времени будет изменяться лишь для внешнего наблюдателя. С часами человека, который захотел бы посетить внутренность черной дыры, было бы все в порядке, он за конечное (по его часам) время упал бы в центр этого объекта.

Не будем пока обсуждать реальность такого эксперимента, а поясним явление замедления времени следующим примером. Пусть мы с Земли наблюдаем за экспедицией, приближающейся к черной дыре, и пусть эта экспедиция посылает на Землю сигналы через одинаковые промежутки времени. По мере приближения космического корабля к черной дыре принимающие устройства на Земле отметят, что интервалы времени между сигналами начали увеличиваться. Когда экспедиция достигнет гравитационного радиуса, мы уже не сможем принять последнего сигнала. Именно таким образом для внешнего наблюдателя будет проявляться процесс замедления времени. Ну а из-под шварцшильдовского радиуса не может выйти ничто. Как говорится в детской присказке, «что упало, то пропало». Быть может, поэтому поверхность с радиусом, равным радиусу Шварцшильда, окружающая черную дыру, называется горизонтом событий.

Здесь возникает естественный вопрос. Ну хорошо, нам удалось каким-то образом сжать тело до его гравитационного радиуса. Что будет дальше с этим телом? Ведь силы тяготения стали бесконечными. Это так, и именно тяготение должно привести к непрерывному сжатию вещества в точку, в так называемую сингулярность! Если мы только дошли до гравитационного радиуса, то дальше начинается гравитационный коллапс.

Нет сил, которые могли бы препятствовать этому процессу. Коллапсирующий объект будет сжиматься до бесконечной плотности и бесконечно малых размеров. Таким образом, шварцшильдовская черная дыра — это область пространства, радиус которой равен радиусу Шварцшильда. В ее центре находится сингулярность, где вещество сжато до беспредельных плотностей бесконечными силами тяготения.

Все, о чем мы сейчас говорили, является прямым следствием общей теории относительности. Но все эти результаты получены на бумаге. Поэтому вполне естествен вопрос о том, имеют ли место в природе столь экзотические явления? Ответ на него будет достаточно осторожен: такие объекты в природе должны быть и, более того, должны наблюдаться.

Мы уже говорили о том, что астрофизика сегодня не может обойтись без черных дыр. Они помогают решать массу проблем, связанных с природой квазаров, активностью ядер галактик и т. д. Но это, разумеется, не является прямым доказательством их существования. Когда мы говорим о том, что черные дыры должны существовать в природе, нужно использовать более серьезные аргументы. Такие аргументы дает нам изучение поздних стадий эволюции звезд. Напомним вкратце, что ожидает звезду по мере выгорания в ней термоядерного топлива.

Судьба сравнительно легких звезд с массой не более 1,2 массы Солнца (предел Чандрасекара) предопределена довольно четко. Такие звезды проходят стадию красного гиганта, образования планетарной туманности и затем превращаются в белые карлики, которые, в свою очередь, остывая, переходят в стадию черных карликов.

Мне хотелось бы напомнить сразу одну важную вещь. И белый, и черный карлики представляют собой объекты устойчивой конфигурации. Давление вырожденного электронного газа не зависит от температуры и вполне может противостоять сжимающей звезду силе гравитации.

Быстрый переход