Изменить размер шрифта - +

Но когда-то кончается и гелий. Причем значительно быстрее, чем кончился водород. Когда это происходит, звезда теряет свои наружные слои. Они расширяются и отделяются от ядра звезды. Эти слои впоследствии наблюдаются как планетарная туманность. Судьба ядра звезды после этого зависит от ее массы. Если масса звезды меньше 1,2 массы Солнца, то вещество звезды под действием гравитационного сжатия уплотняется таким образом, что его плотность достигает 10 тысяч тонн в кубическом сантиметре. При такой огромной плотности атомы разрушаются. После этого сжатие звезды прекращается, так как ему начинает противодействовать сила упругости образованного очень плотного газа. Образованная таким путем звезда (ее называют «мертвой») является белым карликом. Таким образом, до того, как звезда превратится в белого карлика, она на некоторое время становится красным гигантом. Затем белый карлик в течение нескольких миллиардов лет остывает и превращается в черного карлика, то есть тело не излучающее, а поэтому и невидимое. И.С. Шкловский назвал его «трупом» звезды. Если масса первоначальной зашлакованной звезды превышает критическую величину в 1,2 массы Солнца, то силы упругости сверхплотного (вырожденного) газа не в состоянии справиться с силами гравитационного сжатия.

Если масса звезды не превышает 10 масс Солнца (но больше 1,2 массы Солнца), то события развиваются следующим образом. Чрезмерное сжатие звезды приводит к сильному увеличению ее температуры. Когда температура превысит пять миллиардов градусов, начинают играть важную роль реакции, в результате которых образуется нейтрино. Поскольку нейтрино не обладает зарядом и массой покоя, оно практически беспрепятственно проникает через любые вещества, в том числе и через вещество звезды. Энергия, которую создает внутри звезды сильное гравитационное сжатие, этими частицами выносится наружу. Они выносят больше энергии, нежели ее расходует звезда на свое свечение в видимом диапазоне. Так как энергия изнутри звезды выносится наружу нейтрино, то звезда получает возможность сжиматься быстрее. Сжатие удваивается каждую секунду. Остановить это сжатие уже нельзя. Но когда огромная звезда ужимается до размеров сферы с радиусом в 10 километров и плотность вещества звезды достигает миллиарда тонн в кубическом сантиметре, вступают в игру новые силы, возникающие при деформации атомных ядер. Ядра распадаются на протоны и нейтроны. Но протоны, захватив на каждый протон по одному электрону, превращаются в нейтроны (при этой реакции также выделяется нейтрино). С этого времени вещество звезды состоит преимущественно из нейтронов. Остальные элементарные частицы представляют собой просто примеси в пренебрежимо малых количествах. Для этого процесса введен термин: нейтронизация вещества звезды. При этом образуется нейтронное вещество со свойствами несжимаемой жидкости. Плотность его равна плотности вещества внутри атомного ядра. Но нейтроны сцеплены между собой не ядерными силами (как внутри ядра), а силами гравитации. Поскольку образованная таким путем нейтронная жидкость является несжимаемой, то дальнейшее сжатие звезды прекращается. Силы гравитационного сжатия уравновешиваются силами упругости нейтронной жидкости. Это успешно происходит в том случае, если масса звезды не превышает вдвое массу Солнца. В том случае, если масса звезды превышает двойную массу Солнца, звезда может остановить свое сжатие только в том случае, если она каким-либо образом сбросит с себя лишнюю массу в форме взрыва.

Взрыв происходит в образовавшемся ядре звезды, поскольку оно является неустойчивым. При взрыве выделяется энергия и образуется ударная волна, которая, распространяясь наружу, выбрасывает из звезды наружные слои. Они отделяются от звезды и образуют газовое облако, которое по инерции продолжает быстро расширяться. Оптическая яркость звезды после взрыва увеличивается в миллион раз. Это настолько заметное явление на небе, что его можно наблюдать даже невооруженным глазом. Это явление было названо вспышкой Сверхновой звезды.

Быстрый переход