Изменить размер шрифта - +
По теории А. Эйнштейна сила притяжения становится бесконечно большой еще до того, как радиус уменьшится до нуля. То есть она нарастает с уменьшением радиуса быстрее, чем по теории Ньютона. Тот радиус, при достижении которого сила тяготения стремится к бесконечности, принято называть гравитационным радиусом. Подчеркнем еще раз, что по классическим представлениям он равен нулю. Чем меньше масса тела, тем меньше его гравитационный радиус. Например, для нашей Земли он равен 1 сантиметру, для Солнца он равен 3 километрам. Различия между классической теорией и теорией относительности проявляются тогда, когда истинный радиус звезды близок к гравитационному радиусу. Пока различие между ними большое, нет необходимости привлекать теорию тяготения А. Эйнштейна, а можно спокойно пользоваться классическими уравнениями Ньютона, как это и делал П. Лаплас.

Теория относительности А. Эйнштейна устанавливает взаимоотношения между силами гравитации, течением времени и геометрическими свойствами пространства. Из нее следует, что в сильном гравитационном поле время замедляется относительно тех мест, где силы гравитации малы. Так, вблизи Земли время течет на одну миллиардную часть медленнее, чем в далеком космосе. Ясно, почему мы этого не замечаем. Даже вблизи массивных звезд это замедление времени неощутимо. Оно сразу дает о себе знать, когда масса звезды очень велика, а радиус очень мал, то есть при приближении к гравитационному радиусу. Но с силами гравитации связано не только время, но и пространство. В соответствии с теорией относительности пространство искривляется в гравитационном поле. Чем больше это поле, тем сильнее искривление. Приводится даже такое наглядное сравнение. Идеальную плоскость в пространстве делают из тонкой резиновой нервущейся пленки. На нее опускают металлический шар (черную дыру) и под его весом пленка прогибается. Так иллюстрируют искривление пространства под действием гравитационного поля массивной черной дыры. Надо сказать, что как замедление времени, так и искривление пространства вблизи сильных полей гравитации были измерены. В теории относительности существовавшие до этого по отдельности понятия абсолютного времени и абсолютного пространства объединены в одно понятие «пространство — время», поскольку они взаимосвязаны через поле гравитации.

Значение гравитационного радиуса было рассчитано по уравнениям теории тяготения Эйнштейна спустя месяц после опубликования теории в 1915 году немецким астрономом и математиком К. Шварцшильдом. С тех пор этот радиус носит его имя. Шварц-шильд получил решения уравнений Ньютона для сферического невращающегося тела и основные свойства черной дыры, хотя в то время ни он, ни А. Эйнштейн, которому он передал работу, еще не подозревали о таком приложении результатов.

Пока силы гравитации сжимают звезду и ее радиус больше радиуса Шварцшильда, силам гравитации противодействуют силы внутреннего давления звезды. Эти силы неспособны противостоять сжимающей звезду силе гравитации в том случае, если ее радиус уменьшится до гравитационного радиуса. Произойдет сжатие вещества звезды, которое физики назвали релятивистским коллапсом. Собственно, и черные дыры длительное время назывались коллапсами и только в конце шестидесятых годов с легкой руки американского физика Д. Уилера их стали называть так.

Напрашивается вывод, что если каким-либо образом сжать звезду или планету до размеров ее гравитационного радиуса, то дальше усилия можно не прилагать — она сколлапсирует сама и превратится в черную дыру. Для этого требуется немного — сжать, например, Солнце до радиуса в 3 километра.

Строгий расчет релятивистского гравитационного коллапса на основании решения уравнений общей теории относительности был выполнен в 1939 году американскими учеными Р. Оппенгеймером и Г. Волковым. Это было строгое, теоретически обоснованное предсказание существования черной дыры. Ясно, что ни Шварц-шильд, ни тем более Лаплас не предсказали существование черных дыр со всеми их свойствами.

Быстрый переход