Это ближе к ее границе, чем к центру.
Количество звезд в Галактике огромно — оно превосходит сто миллиардов.
При измерении в спектрах звезд линий поглощения был обнаружен межзвездный газ. Это поглощение вызывалось межзвездным кальцием и межзвездным натрием. Как образуются эти линии? Кальций и натрий заполняют все пространство между наблюдателем и звездой, и через них проходит свет от звезд. Поскольку эти натрий и кальций никак не связаны со звездами, то линии поглощения, создаваемые ими, одинаковые для всех звезд. Кроме того, лучевая скорость, определенная по линиям межзвездного кальция и натрия, очень отличается от лучевой скорости, которая получается по линиям спектра, принадлежащим самой звезде.
Вначале в межзвездном газе обнаружили натрий и кальций. Затем обнаружили кислород, титан и другие элементы. Были обнаружены и некоторые молекулярные соединения: циан СN, углеводород СН и другие.
Плотность межзвездного газа определяется по интенсивности его линий. Измерения показали, что эта плотность очень мала.
Рис. 1. Млечный Путь (вид нашей Галактики сбоку)
В самом центре Галактики плотность межзвездного газа должна быть наибольшей. Но и здесь имеется всего по одному атому в объеме 10 000 см3. Сравним с плотностью воздуха в обычных земных условиях, которая составляет 2,71019 молекул на один кубический сантиметр.
Больше всего в межзвездном газе водорода. Но длительное время его не удавалось обнаружить. Это связано с особенностями физического строения атома водорода, а также с характером поля излучения в Галактике. Дело в том, что плотность излучения в Галактике очень мала. Это обусловлено большими расстояниями между звездами. Для сравнения укажем, что если убрать излучение Солнца, отраженный свет от Луны, все планеты и вообще все источники
света на Земле, то остается примерно такое же излучение, как в Галактике. Это излучение исходит от звезд. А раз мало излучения, мало фотонов (квантов), то и мала вероятность того, что они поглотятся атомами и молекулами межзвездного газа. Тем более что этих атомов и молекул также очень мало. Есть еще одно ограничение — это энергия кванта. Она должна быть определенной для того, чтобы ее поглотил атом или молекула. Если энергия кванта велика, то атом ионизируется, то есть энергия кванта уходит на отрыв от атома орбитального электрона. Если же энергия кванта невелика и ее не хватает на отрыв электрона от атома, то атом поглощает эту энергию, в результате чего атом возбуждается. Это значит, что орбитальный электрон покидает свое постоянное стабильное место и переходит на другую орбиту. Такой атом уже не стабилен, а возбужден. Он со временем может вернуться в стабильное, устойчивое состояние, но для этого ему надо избавиться от той энергии, которую он поглотил. Иными словами, при переходе в свое устойчивое, основное состояние атом должен из-
Рис. 2. Млечный Путь (вид нашей Галактики сверху)
лучить квант той же частоты, а значит, и энергии, которую он поглотил.
В межзвездном газе атомы находятся в возбужденном состоянии очень недолго, всего лишь ничтожную долю секунды. Поэтому большинство атомов межзвездного газа находится в основном в нейтральном, невозбужденном состоянии.
Для того чтобы атом нейтрального водорода перешел в возбужденное состояние, он должен поглотить весьма приличную порцию энергии. Это значит, что излучение, которое должен поглотить атом водорода, должно иметь высокую частоту (чем больше частота кванта, тем больше его энергия). Только в этом случае атом водорода образует линию поглощения. Но эта линия лежит в далекой ультрафиолетовой части спектра. При обычных наблюдениях эта линия в спектрах звезд не получается. По сути, далекое ультрафиолетовое излучение полностью поглощается атмосферой Земли. Для того чтобы замерить эти линии поглощения, надо подняться над атмосферой. Поднять приборы можно с помощью спутников и высотных ракет. |