Изменить размер шрифта - +
Это приблизительно в 450 раз больше числа антинейтрино, испускаемых радиоактивными элементами земной коры, а каждый квадратный сантиметр площади поперечного сечения Земли получает 6·10<sup>10</sup> нейтрино каждую секунду.

Солнечная активность является источником большей части получаемых нами нейтрино. Помимо того, на Землю попадают нейтрино от других звезд, но последние настолько далеки от нас, что их нейтрино имеют очень маленькую плотность в околоземном пространстве, поэтому очень немногие из них достигают Земли. (Другими словами, Земля представляет собой значительно меньшую мишень для нейтрино, летящих с альфа Центавра чем для нейтрино Солнца.)

 

Охота за нейтрино

 

Если Солнце представляет собой столь щедрый источник нейтрино, почему бы не изловить их, скажем, так же, как были пойманы антинейтрино?

При поглощении антинейтрино протоном образуются нейтрон и позитрон. Когда же нейтрон поглощает нейтрино, происходит как бы зеркальная реакция, при которой образуются протон и электрон, т. е.

ν + п → р<sup>+</sup>+ е<sup>-</sup>.

В случае антинейтрино ученые были вынуждены выбрать мишень, богатую протонами, а в последнем случае— богатую нейтронами. Тогда как отдельные протоны легко собрать в виде водорода или химических соединений, содержащих водород, как, например, вода. К сожалению, отдельные нейтроны в больших количествах собрать нельзя. Поэтому пришлось иметь дело с атомными ядрами, содержащими большое количество нейтронов. Бруно Понтекорво предложил использовать хлор-37, который составляет одну четвертую всех атомов хлора. Его ядро содержит 17 протонов и 20 нейтронов. Если один из нейтронов захватит нейтрино, он превратится в протон (и излучит электрон), после чего ядро будет иметь 18 протонов и 19 нейтронов и станет ядром аргона-37. Чтобы сделать большую мишень из нейтронов ядер хлора, можно было бы использовать газообразный хлор или, лучше, жидкий хлор, так как жидкость в данном объеме содержит больше молекул (каждая молекула состоит из двух атомов хлора). Однако хлор — коррозионноактивный газ с сильными токсическими свойствами, а сжижение его представляет большие трудности.

Вместо этого используют органические вещества, содержащие хлор. (Нет оснований сомневаться, что в ядерных реакциях участвуют не только свободные атомы, но и атомы, находящиеся в молекулах.) Обычно используют четыреххлористый углерод, молекулы которого состоят из одного атома углерода и четырех атомов хлора, или тетрахлорэтилен, состоящий из двух атомов углерода и четырех атомов хлора. При комнатной температуре — это жидкости, совершенно безопасные при обычных предосторожностях. (Их часто используют при химической чистке.)

Если атом хлора, который является частью молекулы тетрахлорэтилена, поглощает нейтрино и превращается в атом аргона, его связь с молекулой нарушается, так как атомы аргона не вступают в химическую связь с другими атомами. Таким образом, поглощение нейтрино приводит к образованию свободных атомов аргона из атомов хлора, связанных в молекуле. Свободные атомы аргона в конце концов соберутся в крошечные пузырьки газа.

Немногочисленные атомы аргона можно зарегистрировать лишь благодаря их радиоактивности. Хлор-37 — абсолютно стабильный атом, а аргон-37 — неустойчив, и его обнаруживают даже в малых количествах по особой форме его радиоактивности.

Вид радиоактивности удается установить, если концентрация радиоактивных атомов достаточно велика. Для того чтобы повысить концентрацию аргона, баки после нескольких недель облучения (когда радиоактивных атомов накопится нужное количество) продувают газообразным гелием. Гелий (газ, очень похожий на аргон) увлекает за собой атомы аргона, а после того, как они растворятся в гелии, их легче регистрировать.

С помощью хлор-аргоновой методики американский физик Раймонд Дэвис доказал, что в действительности существуют и нейтрино, и антинейтрино (как это и следовало из закона сохранения лептонного числа).

Быстрый переход