Изменить размер шрифта - +

Предположим, что существуют не две такие частицы, а только одна, и что нейтрино, подобно фотону, является своей собственной античастицей. Тогда во всех субатомных процессах эта частица выступала бы в роли нейтрино и одновременно антинейтрино. Например, если мы обнаружили частицу, которая поглощается протоном, образуя позитрон и нейтрон, та же самая частица должна поглощаться атомом хлора, образуя атом аргона. Первая реакция характерна для антинейтрино, вторая — для нейтрино, и если нейтрино и антинейтрино — одна частица, она одновременно выполняет обе функции.

Ядерный реактор излучает частицы, которые поглощаются протонами. Следовательно, — это антинейтрино. Могут ли те же самые частицы превратить атомы хлора в атомы аргона?

В 1956 году Девис установил баки с тетрахлорэтиленом около реактора и не обнаружил такой реакции, т. е. антинейтрино, существование которых было доказано Коуэном и Рейнисом, по-видимому, не могли выполнять функции нейтрино. Значит, должна существовать другая частица со свойствами нейтрино. Таким образом, закон сохранения лептонного числа был подтвержден.

Следующий этап состоит в непосредственном обнаружении солнечных нейтрино. Для регистрации последних были построены нейтринные телескопы, которые состоят из огромных баков, содержащих 450 000 л или более тетрахлорэтилена, расположенных глубоко под землей. (Дэвис работает в серебряном руднике на глубине полутора километров.) В 1965 году Рейнесом, проводившим исследования в золотом руднике в Южной Америке, за девять месяцев было обнаружено семь нейтрино из межпланетного пространства.

На первый взгляд кажется странным, что астрономические наблюдения должны проводиться глубоко под землей, но это имеет определенный смысл. Через слой земли толщиной в полтора километра проникает очень слабый субатомный «шум». Космические лучи экранируются, и остается лишь «шум», связанный со следами радиоактивных веществ в породах, окружающих шахту. А солнечные нейтрино могут совершенно свободно попасть в бак с тетрахлорэтиленом, хотя он расположен на полуторакилометровой глубине. (С такой же легкостью они могли бы попасть в бак, если бы он находился даже в центре Земли.)

Детектирование солнечных нейтрино имеет огромное значение. Фотоны Солнца проходят невероятно запутанный путь через солнечное вещество, и это путешествие очень сильно изменяет их свойства. Нейтрино же доходят до нас непосредственно из центра.

Зная энергии нейтрино, физики, вероятно, сумеют выяснить характер реакций синтеза, протекающих на Солнце. Энергия образующихся нейтрино зависит от последовательности реакций, в результате которых водород превращается в гелий. Зная энергетический спектр нейтрино, можно определить эту последовательность, которая позволит вычислить внутреннюю температуру Солнца и другие его характеристики. Короче говоря, нейтринная астрономия дает нам возможность «заглянуть» прямо в центр Солнца и узнать много интересного.

 

Сверхновые звезды и нейтрино

 

За последние десятилетия астрономы достаточно подробно разработали теории ядерных процессов, протекающих в ядрах старых звезд. Наше Солнце не принадлежит к этой категории звезд. Хотя возраст его исчисляется пятью или шестью миллиардами лет, оно все еще молодо; оно все еще превращает посредством термоядерного синтеза свои обширные запасы водорода в гелий. Звезды, синтезирующие водород, очень устойчивы и существуют многие миллиарды лет без значительного изменения.

В процессе водородного синтеза в центре звезды образуется гелиевое ядро, объем и температура которого все время возрастают. Когда температура увеличивается до определенной величины, становятся существенными ядерные процессы, которые раньше не имели особого значения. Например, при температуре центра Солнца 15 000 000 °C атомы гелия редко участвуют в реакции синтеза. Однако, когда температура достигает 100 000 000 °C, три ядра гелия все чаще начинают сливаться, образуя ядра углерода.

Быстрый переход