Таким образом, мы имеем, что v = at и d = (at<sup>2</sup>)/2.
В случае, который мы сейчас рассматриваем, значение ускорения a находится в прямой пропорциональной зависимости от H/L, коэффициент пропорциональности удобно символизировать буквой g. Поэтому мы можем сказать:
Обе величины — H и L измерены в футах. При делении H на L футы делятся на футы и единицы измерения пропадают. В результате мы имеем то, что отношение H/L является «чистым» числом и не привязано ни к каким единицам измерения. Но единицы измерения ускорения (g) — фт/с<sup>2</sup>. Чтобы поддержать баланс единиц измерения в уравнении 2.3, необходимо, чтобы единицы измерения g также были фт/с<sup>2</sup>, потому что H/L не вносит в уравнения никаких единиц измерения. Из этого мы можем заключить, что коэффициент пропорциональности g в уравнении 2.3 имеет единицы измерения как у ускорения и поэтому должен представлять собой ускорение.
Для того чтобы понять, что это значит, поднимаем выше один конец наклонной плоскости; чем более крутой мы делаем данную наклонную плоскость, чем больше высота ее поднятого конца, тем больше значение H. Длина же наклонной плоскости (L), конечно, не изменяется. Наконец, когда плоскость встала совершенно вертикально, высота поднятого конца равна полной длине плоскости, то есть H равняется L, a H/L равняется 1.
Шар, катящийся вниз по совершенно вертикальной наклонной плоскости, фактически находится в состоянии свободного падения. Таким образом, в свободном падении H/L равно 1, и уравнение 2.3 приходит к виду:
Все сказанное выше показывает нам на то, что g — не просто ускорение, а специфическое ускорение, которому подвергается тело, находящееся в свободном падении. Тенденция тел — иметь вес и падать на землю — результат свойства называемого «тяжестью» («gravity») (от латинского слова «тяжелый», поэтому для обозначения ускорения свободного падения используется символ «g»).
Если измерить действительное ускорение тела, катящегося вниз по любой данной наклонной плоскости, то можно получить цифровое значение g. Уравнение 2.3 может быть преобразовано в g = aL/H. Для данной наклонной плоскости можно легко измерить длину (L) и высоту (H) поднятого конца и, зная a, можно сразу определить g. Его значение оказывается равным 32 фт/с<sup>2</sup> (по крайней мере, на уровне моря).
До этого места я в целях поддержания дружественных отношений использовал в качестве меры расстояния футы. Это — одна из общепринятых единиц измерения расстояния, используемых в Соединенных Штатах и Великобритании, и мы привыкли к ним. Однако ученые во всем мире используют метрическую систему мер, и мы уже достаточно далеко зашли в изучение предмета, чтобы, как мне кажется, быть способными присоединиться к ним в этом.
Ценность метрической системы в том, что ее различные единицы измерения связаны между собой простыми и логическими отношениями. Например, в обычной системе 1 миля равна 1760 ярдам, 1 ярд равен 3 футам и 1 фут равен 12 дюймам. Преобразование одной единицы измерения в другую — всегда трудная рутинная работа.
В метрической системе единица измерения расстояния — метр. Другие единицы измерения расстояния получаются путем умножения метра на 10 или на число, кратное 10. Благодаря такой системе написания чисел преобразование одной единицы измерения в другую в пределах метрической системы может быть выполнено простым изменением положения десятичной запятой.
Кроме того, в наборе используются стандартизированные префиксы — приставки. Приставка «деци-» всегда подразумевает <sup>1</sup>/<sub>10</sub> стандартной единицы измерения, так что дециметр — <sup>1</sup>/<sub>10</sub> метра. Приставка «гекто-» всегда подразумевает увеличение в 100 раз стандартной единицы измерения, так что гектометр — 100 метров. |