Предположим, например, что между двумя призмами полярископа находится цилиндрический сосуд, содержащий воздух, и что призмы выровнены в том же направлении. Если в сосуд налить воды, ничего не происходит; две половинки поля, видимого в окуляр, остаются одинаково яркими. Плоскость поляризации света не изменилась, пройдя сквозь воду. Если вместо чистой воды в сосуд поместить раствор сахара, то две половинки, видимые в окуляр, будут иметь различную яркость. Чтобы они вновь стали одинаково яркими, анализатор придется повернуть на определенный угол. Этот угол покажет, насколько раствор сахара повернет плоскость поляризации света.
Размер этого угла зависит от различных факторов: от концентрации раствора и природы растворенного вещества; от расстояния, проходимого светом в этом растворе; от длины волны света; от температуры раствора. Если стандартизировать эти факторы и посмотреть или подсчитать, какой угол вращения будет иметь свете длиной волны, которую производит натриевая лампа, проходя один дециметр раствора, содержащего 1 г/см<sup>3</sup> при температуре 20 C°, то мы получим удельное вращение.
Значение удельного вращения характеризует любую прозрачную систему. Для многих систем оно равно 0°, то есть плоскость поляризованного света вообще не поворачивается. Такие системы называются оптически неактивными. Системы, которые поворачивают плоскость поляризованного света, называются оптически активными.
Некоторые оптически активные системы вращают плоскость поляризованного света по часовой стрелке. Это описывается как правостороннее вращение, и такие системы — правосторонние. Другие же вращают свет против часовой стрелки и являются левосторонними.
В 1848 году французский химик Луи Пастер (1822–1895) смог продемонстрировать, что оптическая активность прозрачных кристаллов зависит от асимметричности таких кристаллов. Далее, если таким асимметричным кристаллам придать форму двух зеркал, одно будет правосторонним, а другое — левосторонним. Тот факт, что определенные растворы также были оптически активными, не позволял предположить, что асимметрия должна присутствовать в самих молекулах этих веществ. В 1974 году голландский физик и химик Якоб Ван Гофф (1852–1911) представил теорию молекулярной структуры, которая рассчитывала такую асимметрию в оптически активных средах. Обсуждение этого, однако, более уместно в учебнике химии, и я не буду здесь углубляться в эту тему.
Призмы Николя не только являются приборами для формирования плоскополяризованного света. Есть некоторые типы кристаллов, которые не просто расщепляют свет на два плоскополяризованных луча, а поглощают один и передают другой. Кристаллы сульфата йодохинина ведут себя именно так. К сожалению, невозможно создать большие полезные кристаллы из этого материала, потому что они получаются хрупкими и разрушаются при малейшем воздействии.
Однако в середине 1930-х годов студент Гарварда Эдвин Герберт Ленд (р. 1909) сообразил, что большие цельные кристаллы использовать не обязательно. Крошечные кристаллы, все сориентированные в одном и том же направлении, вполне могут быть использованы для этих же целей. Чтобы поддерживать их ориентацию и удерживать от дальнейшего разрушения, их следует включить в лист прозрачной гибкой пластмассы. Ленд закончил колледж в 1936 году, ушел в бизнес и создал то, что сейчас называют поляроидом. Он может выполнять все функции призм Николя более экономичным и удобным образом (правда, не столь точным).
Как обнаружил Малюс, лучи поляризованного света могут также быть произведены отражением под определенным верным углом от такого материала, как стекло; точный размер угла зависит от коэффициента преломления вещества. Солнечные очки, сделанные из поляроида, могут блокировать большую часть отраженного поляризованного света и урезать блеск.
Так, XIX век описал свет не просто как волну, а как поперечную волну; это решило много проблем, но и поставило некоторые проблемы. |