Изменить размер шрифта - +
Для получения света необходим квадрильон колебаний в секунду. На практике невозможно достичь такой частоты, однако, согласно Максвеллу, теоретически никаких ограничений не существовало. Например, колебания электрического тока довольно низкой частоты — 1000 раз в секунду — порождают 1000 электромагнитных волн в секунду. Если цуг волн распространяется со скоростью 300 000 километров в секунду, то каждая волна будет иметь длину 300 километров (что значительно превышает длину световой волны), но тем не менее существовать такие волны будут.

Первые попытки генерировать длинноволновое излучение были предприняты в 1997 году немецким физиком Генрихом Рудольфом Герцем (1857–1894). Он создал электромагнитную цепь, где сквозь небольшой воздушный промежуток проходила электрическая искра, которая и являлась тем вызывающим излучение переменным зарядом, о котором говорит Максвелл. Чтобы обнаружить, существует излучение или нет, Герц использовал специальный «приемник» — маленький прямоугольный кусок проволоки с небольшим разрывом на одной из сторон. Электромагнитное излучение, проходящее сквозь проволоку, должно было вызывать в ней электрический ток, под действием которого в воздушном промежутке должна была появиться электрическая искра.

И она появилась. Герц знал, что он обнаружил предсказанное Максвеллом электромагнитное излучение и тем самым доказал его теорию. Сначала излучение назвали волнами Герца, однако впоследствии его стали называть радиоволнами («волны, которые излучают»).

Открытие радиоволн показало физикам, насколько широк спектр электромагнитного излучения. Длина волны видимого спектра колеблется от 380 до 760 миллимикрон, т. е. одна октава. (Один миллимикрон — это миллиардная часть метра, а длина волны внутри одной октавы удваивается.)

В 1800 году немецкий астроном Уильям Гершель (1738–1822) открыл волны за пределами видимого спектра. Он изучал спектр солнечного света с помощью термометра и обнаружил, что наиболее сильно термометр нагревается лучами, находящимися ниже красного спектра. Гершель абсолютно верно заключил, что человеческий глаз не в состоянии увидеть весь спектр солнечного света.

Вначале лучи, столь быстро поднимающие столбик термометра, получили название «тепловые», но затем ученые стали использовать более научный термин инфракрасное излучение (т. е. «выше красного»). С развитием волновой теории света (см. ч. II) стало ясно, что волны этого излучения длиннее, чем волны видимого света.

Сегодня за нижнюю границу инфракрасного спектра принята точка в 760 миллимикрон, а за верхнюю — произвольная точка в 3 000 000 миллимикрон. Впрочем, для инфракрасного излучения удобнее пользоваться еще одной счетной единицей — микроном (мк = 1000 миллимикрон). Таким образом, границами спектра инфракрасного излучения являются 0,76 и 3000 микрон, т. е. около 12 октав.

Далее начинаются уже радиоволны. Сразу за отметкой в 3000 мк начинаются ставшие «известными» в последние годы микроволны («микро» — означает «среди радиоволн»), их спектр — от 3000 до 300 000 мк. Здесь уже удобнее пользоваться миллиметрами (в миллиметре — 1000 микрон). То есть спектр микроволн — от 3 до 300 мм (30 см).

За микроволнами начинаются уже «настоящие» радиоволны. Верхней границы у радиоволн нет. Можно генерировать радиоволны все более и более высокой частоты, пока уровень их энергии не станет настолько низким, что их просто нельзя будет обнаружить современными средствами. (Чем больше длина волны, тем меньше ее энергия. См. «Квантовая теория», ч. II.) В технике используются радиоволны длиной до 30 000 000 мм, то есть можно сказать, что спектр полезного радиоволнового излучения — от 300 до 30 000 000 мм (или 0,3–30 000 м).

Длина электромагнитных волн выходит и за пределы фиолетовой части видимого спектра.

Быстрый переход