Азот–14 — удивительный член этой группы. Из 1000 атомов азота 996 являются атомами азота–14, что намного превосходит количество второго стабильного изотопа азота — азота–15, — структура ядра которого является «нечетно-четной» (7 протонов и 8 нейтронов).
Стабильность альфа-частицы, состоящей из пары протонов и пары нейтронов, очень высока. Радиоактивные элементы испускают нуклоны в количестве не меньше одной альфа-частицы.
Альфа-частицы настолько стабильны, что ядро, состоящее из двух альфа-частиц (4 протона и 4 нейтрона), крайне нестабильно, будто альфа-частицы настолько самостоятельны, что «не хотят» соединяться. Такое ядро у бериллия–8, период полураспада которого около 3∙10<sup>–16</sup> секунд.
С другой стороны, стабильность углерода–12, кислорода–16, неона–20, магния–24, кремния–28, серы–32 и кальция–40, ядра которых можно представить как объединение 3, 5, 6, 7, 8 и 10 альфа-частиц, соответственно очень высока.
В свете только что сказанного можно частично объяснить феномен естественной радиоактивности. Атомы таких элементов, как уран–238 и торий–232, для достижения стабильности стремятся уменьшить количество протонов в ядре до 83.
Для достижения этого они испускают альфа-частицы, но в этом случае уменьшается не только количество нейтронов, но и количество протонов. Нейтроны и протон убывают в равных количествах, и соотношение n/p растет, поскольку нейтроны и так содержатся в таких ядрах в избытке. Так, соотношение n/p урана–238 (92 протона, 146 нейтронов) равно 1,59. Если уран–238 для достижения возможной стабильности испустит 5 альфа-частиц, он потеряет 10 протонов, а его атомное число уменьшится до 82 (то есть до свинца). Однако он потеряет еще и 10 нейтронов, и его массовое число упадет на 20 единиц, и уран–238 превратится в свинец–218 (82 протона, 136 нейтронов), соотношение n/p которого равно 1,66. При столь высоком соотношении n/p ни о какой стабильности не может быть и речи. И действительно, свинец–218 обнаружить так и не удалось. Самым тяжелым из известных изотопов свинца является свинец–214, период полураспада которого менее получаса.
Для достижения стабильности с понижением атомного веса должно понижаться и соотношение n/p. Для этого нейтрон превращается в прогон, и происходит излучение бета-частицы. Путем комбинации альфа- и бета-излучений уран–238 становится свинцом–206, теряя при этом 10 протонов и 22 нейтрона, то есть соотношение n/p уменьшается с 1,59 до 1,51.
Совпадения в комбинациях протонов и нейтронов говорят о том, что структура ядер стабильных элементов формируется согласно каким-то определенным закономерностям, а не хаотично. По аналогии с периодической таблицей, основанной, как выяснилось позже, на существовании электронных оболочек, некоторые физики пытались объяснить свойства ядер на основе системы ядерных оболочек.
В 1948 году польский физик Мария Гёпперт-Майер (1906–1972) развила эту систему. Она обнаружила, что наиболее стабильные или наиболее часто встречающиеся изотопы, ядра которых содержат определенное количество нейтронов и протонов. Это количество называется оболочечным числом или более ярким термином «магическое число». Нейтроны и протоны имеют числа, равные 2, 8, 20, 50, 82 и 126.
Например, ядро гелия–4 состоит из 2 протонов и 2 нейтронов, кислорода–16 — из 8 протонов и 8 нейтронов, кальция–40 — из 20 протонов и 20 нейтронов. Все эти три изотопа очень стабильны. Элементом с самым большим количеством стабильных изотопов является олово, ядро которого содержит 50 протонов. Также существуют 6 встречающихся в природе изотопов, ядра которых имеют 50 нейтронов (сюда относится и слаборадиоактивный рубидий–87). Есть еще 7 стабильных изотопов, ядра которых содержат 82 нейтрона, и 4 изотопа (свинца), ядра которых имеют по 82 протона. |