Впрочем, это требование выполнить было достаточно сложно. До 1941 года уран особо нигде не применялся, поэтому его получали лишь в небольших количествах. Однако даже этот уран не был достаточно чистым. Как только были сделаны первые попытки получить чистый уран в большом количестве, возникли еще более строгие ограничения.
Сразу после признания возможности деления ядра урана Нильс Бор заявил, что с теоретической точки зрения вероятность ядерного деления урана–235 выше, чем урана–238. Вскоре это было подтверждено экспериментальным путем. Получалось, что заставить делиться атомы обычного, пусть даже и очень чистого, урана очень сложно, так как 993 из 1000 атомов урана были атомами урана–238, ядра которых поглощают нейтрон, не начиная при этом делиться, в результате чего цепная реакция не возникает.
Для того чтобы значительно повысить шансы возникновения ядерной цепной реакции, нужно получить уран с большим, чем в обычных условиях, содержанием урана–235. Для этого нужно произвести разделение изотопов, что в крупных масштабах сделать довольно сложно.
Химические свойства различных изотопов одного и того же элемента практически одинаковы, и единственное различие заключается в том, что атомы более тяжелого изотопа медленнее вступают в реакцию. Ярким примером этого является водород–2, масса которого ровно в два раза больше, чем у водорода–1, благодаря чему разделить их довольно легко. Разница же масс урана–238 и урана–235 составляет всего лишь 1,3%.
Лучшим методом разделения изотопов, массы которых мало отличаются, является пропускание содержащего их газа через пористый материал (рассеивание). Молекулы пройдут сквозь поры, причем молекулы, содержащие более легкие изотопы, сделают это быстрее, чем молекулы, содержащие более тяжелые изотопы.
Таким образом, часть газа, прошедшая сквозь пористый материал первой, будет «обогащенной», то есть с большим, чем обычно, содержанием легких изотопов, в то время как часть газа, вышедшая последней, будет «обедненной», так как концентрация легких изотопов в них меньше, чем обычно. Разница между частями очень невелика, однако процесс можно повторить. Части газа с меньшим содержанием легких изотопов можно объединить и снова рассеять сквозь пористый материал. Если повторять процесс достаточное количество раз, то изотопы окажутся разделенными практически полностью. Чем меньше разница в массе изотопов, тем больше необходимо циклов.
Понятно, что для этого метода рассеивания необходим газ, однако ни сам уран, ни его обычные соединения не являются газообразными. Филип-Хауге Эйблсон предложил использовать гексафторид урана (UF<sub>6</sub>), не являющийся газообразным веществом при нормальной температуре, однако превращающийся в летучую жидкость уже при 56 °С, а значит, его можно без особых сложностей превратить в газ.
Молекулярный вес гексафторида урана–238 составляет 352, а гексафторида урана–235–349. Разница молекулярных весов всего 0,85%, поэтому процесс рассеивания должен быть действительно длинным. Для этих целей в Оук-Ридж (шт. Теннесси) в начале 1940 года были построены большие сооружения (каскады рассеивания), где UF<sub>6</sub> пропускали через огромное количество пористых преград, а части газа разделялись и объединялись автоматически. В итоге с одного конца образовывался обогащенный гексафторид, а с другого — обедненный.
Атомный котел
По мере продвижения работ по очищению и разделению изотопов стало понятно, что даже в идеальных условиях ядерная цепная реакция не возникнет в ограниченном объеме урана. Даже атомы урана–235 могут и не поглотить летящий нейтрон. Нейтрон может просто-напросто оттолкнуться от атома урана. Причем это может повторяться снова и снова и лишь сотый или даже тысячный атом урана–235 поглотит этот нейтрон. |