Изменить размер шрифта - +
Например, электронно-позитронная пара может образоваться из фотонов гамма-лучей, после чего электрон и позитрон вступают во взаимодействие и образуют нейтрино и антинейтрино:

 

В этой реакции энергия, заряд, количество движения, угловой момент, а также электронное число сохраняются. Общее электронное число электрона и позитрона равно 0, как и у нейтрино и антинейтрино.

Вероятность такого электронно-позитронного взаимодействия чрезвычайно мала даже при температуре солнечного ядра, поэтому его нельзя принимать за важный источник нейтрино. Впрочем, в ходе образования звезды ядро становится все горячее и горячее и вероятность преобразования фотонов в нейтроны через электронно-позитронную пару растет.

Подсчитано, что при температуре 6 000 000 000 °С преобразование фотонов в нейтроны идет настолько интенсивно, что нейтроны несут большую часть энергии ядра такой звезды. Нейтроны тут же покидают ядро, унося с собой столько энергии, что ядро взрывается. При этом выделяется огромное количество энергии. Предполагается, что именно в результате этого звезды взрываются, образуя сверхновые.

То, что вероятность взаимодействия нейтрино с другой частицей крайне мала, конечно же не означает, что такое взаимодействие невозможно. Необходимая для поглощения нейтрино толщина твердого материала в 3500 световых лет — это лишь усредненное значение. Для некоторых нейтрино требуется гораздо больше вещества, а для некоторых — гораздо меньше. Существует некоторая, пусть чрезвычайно малая, но не равная нулю вероятность того, что нейтрино поглотит вещество толщиной всего лишь в километр, а то и в несколько сантиметров.

В 1953 году американские физики Клайд Коуэн и Фредерик Райнес провели серию экспериментов, целью которых было доказать возможность такого взаимодействия. В качестве мишени для протонов они использовали огромные резервуары с водой (в воде много атомов водорода, ядра которых состоят из одного протона), поместив их на пути потока антинейтрино, испускаемых от термоядерного реактора. (Антинейтрино образовывались в результате быстрого преобразования нейтронов в протоны внутри ядер продуктов деления.)

Если согласно формуле, обратной формуле 14.1, для образования нейтрона антинейтрино должен присоединиться к протону, протон должен одновременно присоединить и электрон. Именно необходимость присоединения двух частиц одновременно сводит вероятность такой реакции практически до нуля. Однако поглощение электрона эквивалентно испусканию позитрона, и поэтому вероятное взаимодействие нейтрино и протона приобретает следующий вид:

 

В ходе такой реакции барионное число сохраняется, так как вместо протона (+1) появляется нейтрон (+1). Сохраняется и электронное число — антинейтрино (–1) заменяется позитроном (–1).

Коуэн и Райнес подсчитали, что в используемой ими водной мишени взаимодействия антинейтрино и протона должны происходить 3 раза в час. Неудобство заключалось в том, что одновременно происходило и огромное количество других явлений, связанных с космическими лучами, паразитными радиоактивными излучениями и т. п. Вначале эти нежелательные явления происходили в несколько раз чаще, чем искомые реакции антинейтрино. Со временем их количество удалось сократить до допустимого предела с помощью мощного экранирования, отсеивающего большую часть поступающих извне субатомных частиц, но конечно же не представляющего преграды для антинейтрино.

Оставалось лишь точно и с максимальной долей уверенности зафиксировать взаимодействие антинейтрино. В процессе этого взаимодействия образуются позитрон и нейтрон. Позитрон сразу же вступает в реакцию с электроном, сопровождающуюся испусканием в противоположных направлениях гамма-лучей известного запаса энергии.

Образующийся в результате взаимодействия нейтрон через несколько миллионных долей секунды поглощается атомами кадмия (кадмий в форме соединения хлорида кадмия добавляется в воду как раз в целях поглощения нейтронов), после чего атом кадмия, приведенный лишним нейтроном в возбужденное состояние, испускает гамма-луч (а иногда и три гамма-луча) известной частоты.

Быстрый переход