Изменить размер шрифта - +

Можно спросить: а может ли движение вниз по наклонной плоскости дать результаты, которые справедливо применять и для случая свободного падения? Кажется вполне разумным предположить, что может. Если что-то истинно для любого из углов, под которым находится наклонная плоскость, оно должно быть истинно и для свободного падения, поскольку свободное падение можно рассматривать как качение вниз по наклонной плоскости, максимально отклоненной по отношению к горизонтали, то есть под углом 90 градусов.

Например, можно легко видеть, что достаточно тяжелые шары различных весов катятся вниз по одной и той же наклонной плоскости с одной и той же скоростью. Это правило является истинным для любого угла к горизонтали, под которым отклонена наклонная плоскость. Если плоскость отклонить более резко, шары покатятся быстрее, но все они одинаково увеличат скорость своего движения и в конечном итоге покроют одно и то же расстояние за одно и то же время. Справедливо будет заключить, что свободно падающие тела пролетят равные расстояния за равное время независимо от их веса. Другими словами, тяжелое тело не будет падать более быстро, чем легкое тело, что не соответствует точке зрения Аристотеля.

(Существует известная история о том, что Галилео доказал это, бросив два объекта различного веса с наклонной Пизанской башни, и они ударились о землю одновременно. К сожалению, это — только легенда. Историки совершенно уверены, что Галилео никогда не проводил такого эксперимента, но вот голландский ученый Симон Стевин (1548–1620) производил подобные измерения за несколько лет до экспериментов Галилео. В холодном мире науки, однако, осторожные и исчерпывающие эксперименты вроде тех, что проводил Галилео с наклонными плоскостями, иногда значат больше, чем некоторые сенсационные демонстрации.)

Все же можем ли мы действительно так легко расстаться с аристотелевскими представлениями о движении? Нет никаких сомнений в справедливости утверждения того, что скорости движения шаров по наклонной плоскости равны, но, с другой стороны, не менее справедлив и тот факт, что мыльный пузырь падает гораздо медленнее, чем шарик от пинг-понга того же самого размера, и что шарик от пинг-понга падает гораздо более медленно, чем твердый деревянный шар того же самого размера.

Однако этому имеется объяснение. Объекты не падают сквозь ничто, они падают сквозь воздух, и, чтобы падать, они должны, если можно так выразиться, «раздвинуть» воздух. Мы можем принять точку зрения, что процесс «раздвигания» воздуха занимает время. Тяжелое тело осуществляет сильный нажим и легко «раздвигает» воздух, «проталкивая» его мимо себя, и поэтому не теряет фактически никакого времени. Не имеет значения, сколько весит тело: один фунт или сотню фунтов. Однофунтовый вес испытывает такое малое сопротивление воздуха в процессе его «раздвигания», что вес в сотню фунтов едва ли может улучшить этот результат. Поэтому оба веса падают на равные расстояния за равное время. Действительно, легкое тело типа шарика для пинг-понга нажимает на воздух настолько мягко, что из-за этого испытывает значительное сопротивление в «раздвигании» воздуха на своем пути и поэтому падает медленно. По той же причине мыльный пузырь падает вообще еле заметно.

Можно ли использовать это объяснение «воздушного сопротивления» как соответствующее истине? Или это только выдумка, призванная объяснить неудачу обобщения Галилео для реальных условий жизни? К счастью, данный вопрос может быть проверен. Сначала предположите, что у вас есть два объекта равного веса, причем первый — сферический и компактный, а другой — широкий и плоский. Широкий плоский объект вступает в контакт с воздухом по более широкому фронту и, чтобы упасть, должен «раздвинуть» большее количество воздуха на своем пути. Поэтому он будет испытывать большее сопротивление воздуха, чем компактный сферический объект, и будет падать медленнее, несмотря на то что оба объекта имеют равный вес.

Быстрый переход