Изменить размер шрифта - +
Но для того чтобы воздействие сдвига закончилось появлением поперечной волны, необходимо, чтобы силе, производящей сдвиг, противостояла другая сила, которая сдвигает части тела обратно, на первоначальные места.

Например, в пределах твердого тела удар может заставить одну часть материи тела сдвигаться вбок относительно соседней части. Однако сильные силы сцепления между молекулами твердого тела, которые имеют тенденцию удерживать каждую молекулу на одном месте, будут возвращать сдвинутую часть. Она отскакивает назад, проходит свое «нулевое» положение, отскакивает назад снова, проходит мимо «нулевого» положения и так далее. Явившаяся результатом этого вибрация распространяется таким же образом, каким волны распространяются по поверхности жидкости; результатом является возможность передать поперечные волны через материю твердого тела.

Однако в жидкостях и газах силы сцепления гораздо более слабые, чем в твердых телах, и не способны восстановить сдвиг. Если мы переместим часть воды или воздуха вбок относительно соседней части, то некоторое дополнительное количество воды или воздуха просто натечет в область, которую перемещающаяся часть оставила «пустой», а новое взаимное расположение частей останется. Поэтому в телах жидкостей не существует никаких поперечных волн.

Точнее говоря, поперечные волны будут перемещаться по горизонтальной верхней поверхности жидкостей, поскольку там мы имеем особый случай — существование внешней силы — силы тяжести, которая сопротивляется сдвигу «вверх и вниз». Однако в пределах тела жидкости сила тяжести не может выполнять эту работу, поскольку каждый из фрагментов воды поддерживается на поверхности окружающей его водой. Так как плотность каждой частицы воды равна плотности окружающей ее воды, то вес каждой частицы воды равен нулю, и она не отвечает на воздействие силы тяжести. Если часть воды в пределах тела жидкости поднята на сдвиг, она остается в новом положении, несмотря на силу тяжести. Таким образом, распространение поперечных волн ограничено поверхностью жидкости, а так как газы не имеют никакого определенного объема и поэтому никакой определенной поверхности, то из этого следует, что поперечные волны не передаются газами ни при каких условиях.

Следовательно, если звук передается сквозь воздух в форме волны (а все свидетельствует, что так оно и есть), то форма этой волны не может быть поперечной. Логично было бы предположить существование альтернативной формы волны, такой, чтобы она состояла из периодических сжатий и разрежений.

Рассмотрим, например, колебания камертона. Ножка камертона создает быстрые периодические колебания, перемещаясь влево-вправо, влево-вправо и так далее. По мере того как она перемещается вправо, молекулы воздуха, находящиеся непосредственно справа от нее, смещаются, сдвигаясь вместе и формируя маленький объем сжатия. Давление в пределах этого сжатого объема больше, чем в соседнем объеме нормального воздуха. Молекулы в сжатом объеме «разворачиваются» и «толкают» молекулы примыкающего к ним объема, сжимая его. Соседний объем, по мере того как «разворачивается», сжимает следующего за ним соседа и так далее. Таким образом, данный объем сжатия распространяется наружу но всех направлениях, формируя вокруг источника возмущения расширяющуюся сферу так же, как в жидкости вокруг источника возмущения формируется расширяющийся круг, состоящий из гребней воды. (Атмосфера является трехмерной средой, а поверхность воды — двумерной, вот почему мы в одном случае имеем расширяющуюся сферу, а в другом случае — расширяющийся круг.)

Тем временем ножка камертона, которая переместилась вправо и создала расширяющийся объем сжатия, перемещается влево. Направо от ножки образуется большее количество места, а находящийся там объем воздуха расширяется и становится более разреженным. Давление, которое в соседнем, неразреженном, объеме выше, толкает воздух в разреженное место и разрежается в процессе этого само.

Быстрый переход