Если чайка найдет немного еды, она съедает ее молча, а когда еды много, характерным криком сзывает других чаек разделить с ней трапезу.
«И у птиц, и у млекопитающих сигналы тревоги всегда пронзительны, резки и либо длительны, либо многократно повторяются. Крики угрозы не так пронзительны, но тоже резки, как, например, рычание собак (кстати, лишь немногие знают, что воробьи в аналогичных случаях тоже издают весьма странный звук, похожий на рычание). Песни призыва, исполняемые родителями, звучат обычно нежно, на низкой частоте, и повторяются» (Реми Шовен).
Ультразвуковые коммуникации
Как млекопитающие общаются между собой криками, мычанием, ржанием, воем, ворчанием и прочее, с давних пор знакомо человеку. Но есть у зверей и неслышная нам «речь» — ультразвуковая. Открыта она была впервые у летучих мышей.
С физической точки зрения всякий звук — это колебательные движения, распространяющиеся волнообразно в упругой среде.
Чем больше вибраций совершает в секунду колеблющееся тело (или упругая среда), тем выше частота звука. Самый низкий человеческий голос (бас) обладает частотой колебаний около восьмидесяти раз в секунду или, как говорят физики, частота его колебаний достигает восьмидесяти герц. Самый высокий голос (например, сопрано перуанской певицы Имы Сумак) около 1400 герц.
В природе и технике известны звуки еще более высоких частот — в сотни и даже миллионы герц. Человеческое ухо воспринимает звуки с частотой колебаний лишь до двадцати тысяч герц. Более высокочастотные акустические колебания называют ультразвуком, его волнами летучие мыши и «ощупывают» окрестности.
Ультразвуки возникают обычно в гортани летучей мыши. Здесь вроде своеобразных струн натянуты голосовые связки, которые, вибрируя, производят звуки. Ведь гортань по своему устройству напоминает обычный свисток. Выдыхаемый из легких воздух вихрем проносится через нее, возникает «свист» очень высокой частоты: до 150 тысяч герц, человек его не слышит.
Летучая мышь периодически задерживает поток воздуха, затем он с такой силой вырывается наружу, словно выброшен взрывом. Давление проносящегося через гортань воздуха вдвое больше, чем в паровом котле. Неплохое достижение для зверька весом в 5–20 граммов!
В гортани летучей мыши возбуждаются кратковременные высокочастотные звуковые колебания — ультразвуковые импульсы. В секунду следует от 5 до 60, а у некоторых видов до 200 импульсов. Каждый импульс, «взрыв», длится 0,002–0,005 секунды (у подковоносов — 0,05–0,1 секунды).
Краткость звукового сигнала — очень важный физический фактор. Только из-за краткости возможна точная эхолокация, то есть ориентировка с помощью ультразвуков.
От препятствия, которое удалено на семнадцать метров, отраженный звук возвращается к зверьку приблизительно через 0,1 секунды. Если звуковой сигнал продлится дольше, то его эхо, отраженное от предметов, расположенных ближе семнадцати метров, будет восприниматься одновременно с исходным звучанием. А ведь по промежутку времени между концом посылаемого сигнала и первыми звуками вернувшегося эха летучая мышь инстинктивно получает представление о расстоянии до предмета, отразившего ультразвук. Поэтому звуковой импульс так краток.
Эхолокатор летучих мышей — очень точный навигационный «прибор»: он в состоянии запеленговать даже микроскопически малый предмет диаметром всего 0,1 миллиметра! И только когда экспериментаторы уменьшили толщину проволоки, натянутую в помещении, где порхали летучие мыши, до 0,07 миллиметра (толщина человеческого волоса), зверьки стали натыкаться на нее.
Летучие мыши наращивают темп эхолотирующих сигналов примерно за два метра от проволоки. Значит, за два метра они ее и «нащупывают» своими «криками». Но летучая мышь не сразу меняет направление, летит прямо на препятствие и лишь в нескольких сантиметрах от него резким взмахом крыла отклоняется в сторону. |