Изменить размер шрифта - +
В действительности мы, однако, наблюдаем другое. Масса атома гелия равна массе не 2 протонов, а 4; атом углерода имеет массу не 6 протонов, а 12. Таким образом, ясно, что в атомном ядре содержатся ещё какие-то другие частицы, помимо протонов.

Что это за частицы?

Было предположено, что в состав ядра входят наряду с протонами электроны. При этом всегда число протонов в ядре больше, чем электронов, так, чтобы остающийся неуравновешенным положительный заряд ядра был равен отрицательному заряду всех электронов электронной оболочки.

Такой взгляд на строение атомного ядра, казалось бы, подтверждался также и тем, что как при самопроизвольном распаде радиоактивных веществ, так и при искусственном расщеплении атомных ядер из них часто вылетают электроны.

Однако ряд опытов и расчётов заставил физиков отказаться от такого объяснения устройства ядра.

И перед учёными снова встал вопрос: каково же строение атомного ядра? Ведь неоспоримо, что что-то должно входить, помимо протонов, в состав ядра.

Это «что-то» было найдено в 1932 году. При опытах «бомбардировки» альфа-частицами атомов бериллия была найдена новая частица, не имеющая никакого заряда. Масса этой частицы, названной нейтроном, оказалась почти точно равной массе протона.

Открытие нейтрона имело большое значение для учения о составе атомного ядра. Согласно теории, впервые предложенной советским учёным Д. Д. Иваненко и теперь общепризнанной, ядро атома состоит из нейтронов и протонов, входящих в него примерно в равном количестве. Так, считают, что ядро атома гелия содержит 2 протона и 2 нейтрона. Таким образом, общая масса атома гелия равна массе 4 протонов, а заряд его ядра — 2 элементарным зарядам. Ядро фосфора, имеющее заряд 15 и массу 31, построено из 16 нейтронов и 15 протонов и т. д.

Вопрос о природе и характере тех особых сил, которые связывают в ядре нейтроны с протонами и обусловливают огромную устойчивость большинства ядер обычных (нерадиоактивных) атомов, остаётся ещё окончательно не решенным.

Что, действительно, может удерживать нейтроны и протоны в атомном ядре? Электрические силы? Но электрические силы оказывают только «разрыхляющее» действие на ядро, вызывая отталкивание протонов друг от друга. Таким образом, здесь мы встречаемся с какими-то особыми силами, названными ядерными, природа которых для нас еще далеко не ясна. Ясно лишь, что эти особые ядерные силы очень велики; ведь они должны не только «цементировать», скреплять в ядре нейтроны и протоны, но и преодолевать электрические силы взаимного отталкивания между протонами, потому что эти положительно заряженные частички, отталкиваясь друг от друга, стремятся разлететься во все стороны.

В действительности мы видим, что большинство атомных ядер настолько прочно, что ни высокая температура, ни высокое давление не могут их разрушить. Следовательно, ядерные силы, о природе которых мы можем пока только догадываться, должны быть огромны.

Таков этот необычный мир малого, мир атома. Как сложен, оказывается, этот «кирпич мироздания», еще так недавно считавшийся твёрдым, непроницаемым и неделимым!

 

 

VIII. РУКАМИ ЧЕЛОВЕКА

 

1. «Алхимики XX века»

 

А теперь, когда наш рассказ о строении вещества подходит к концу, вспомним еще раз об алхимиках.

Сколько поколений учёных прошлого ценой всей своей жизни старалось превратить заманчивую мечту в действительность. Свинец — в серебро, медь — в золото! Увы! Это так и осталось для них мечтой. Теперь, когда мы читаем о работах алхимиков, мы ясно видим, почему они не могли воплотить свою мечту в жизнь. Для этого у них не было главного — истинного знания природы вещей, не говоря уже об отсутствии технических возможностей нашего времени.

Ну, а как же обстоит дело с превращением элементов сейчас? Ведь теперь мы знаем об элементах и внутреннем устройстве их атомов несравненно больше алхимиков.

Быстрый переход