Наоборот, ядро радиоактивного изотопа натрия содержит в себе 13 нейтронов против 12, содержащихся в природном натрии.
Так была найдена разгадка устойчивости и неустойчивости атомов различных элементов. Оказывается устойчивость атомного ядра зависит от того, в каком соотношении находятся в нём нейтроны и протоны.
Только ядра с определёнными соотношениями числа нейтронов к числу протонов являются устойчивыми. Любое нарушение этих соотношений — и ядро атома становится радиоактивным. Распад ядра идёт до тех пор, пока в нём не восстановится нарушенное равновесие протонов и нейтронов.
Изучая процессы внутриядерных превращений, физики пришли и к ещё более изумительному достижению. Они получили совершенно новые, не существовавшие в природе элементы!
Вот история этого открытия.
Изучая воздействие быстрых нейтронов на ядра различных элементов, учёные добрались и до последнего, самого тяжёлого элемента таблицы — до урана. Ядро этого элемента имеет самый большой вес — 238 и самый большой заряд — 92. Когда атомы урана были «обстреляны» нейтронами, то оказалось, что нейтроны, поглощаемые ядрами урановых атомов, увеличивают массу этих ядер до 239. Полученный таким образом уран с весом 239 и зарядом 92, в отличие от своего изотопа 238 (природного урана), распадается очень быстро — в течение нескольких десятков минут. Уран 239 выбрасывает из себя не альфа-частицы, как природный уран, а бета-частицы, то-есть быстрые электроны. В результате такого распада заряд ядра увеличивается до 93, а вес остаётся тем же — 239 (такие химические элементы, имеющие одинаковый атомный вес, но различный заряд ядра, называются изобарами, то-есть «имеющими один и тот же вес»). Получился новый элемент с порядковым номером 93, которого нет в природе.
Этот элемент был назван нептунием.
Но нептуний также неустойчив. Из его ядер вновь вылетает по электрону. Получается новый элемент с зарядом 94 и весом 239 — плутоний. Этот элемент распадается уже медленно, как и уран, с выделением альфа-частиц.
Подобным же образом были получены и еще четыре новых элемента. Все они получили название трансурановых элементов, то-есть элементов, расположенных в таблице Менделеева за ураном.
Так периодическая таблица элементов пополнилась в наше время шестью новыми элементами, созданными искусственным путём.
Ещё более интересным было третье открытие. Производя опыты с «бомбардировкой» урана нейтронами, физики установили также, что под действием нейтронов с ядром урана могут происходить и другие превращения, а именно — в некоторых случаях ядро урана, захватив медленный нейтрон, раскалывается на две половины! В результате получаются два новых ядра, например, ядра атомов элементов криптона и бария или рубидия и цезия. Было установлено, что это происходит с ядром изотопа урана, имеющего массу 235.
И вот что оказалось замечательным при таком делении: во-первых, выделяется в короткое время огромное количество внутриядерной энергии и, во-вторых, из образовавшихся осколков урановых ядер вылетают новые освобождающиеся нейтроны (рис. 25).
Рис. 25. Цепная реакция распада атомных ядер урана-235.
А это последнее обстоятельство и явилось основой получения и использования внутриядерной, или, как ее часто называют, атомной энергии!
В самом деле, ведь вылетающие из разбитого первым нейтроном ядра несколько новых нейтронов в свою очередь способны вызывать деление новых ядер и создавать тем самым еще большее число «ядерных пуль» и т. д. Таким образом, стоит только расколоть одно-единственное ядро урана 235, как уже дальше реакция расщепления урановых ядер с массой 235 будет всё нарастать и нарастать, не прекращаясь до тех пор, пока разложится вся масса урана 235 (происходит так называемая цепная реакция распада урановых ядер). |