Но можно ли сказать, что КЭД является полной теорией взаимодействия электронов и фотонов? Разумеется, нет. Например, мы знаем, что если рассматривать достаточно высокоэнергетические процессы с участием массивных W и Z бозонов, то КЭД становится частью более общей теории — теории электрослабого взаимодействия. То есть на данном этапе КЭД сама по себе неполна.
Это не досадная случайность. Даже если бы W и Z бозонов не существовало, а электромагнетизм и гравитация были единственными известными нам силами в природе, мы все равно не могли бы назвать КЭД полной теорией электронов и фотонов. Потому что, как стало понятно спустя несколько лет после совещания в Шелтер Айленде, это утверждение без последующего уточнения не имеет физического смысла.
Соединение теории относительности и квантовой механики, первым успешным примером которого является КЭД, демонстрирует, что любая теория, и КЭД в том числе, имеет смысл только в той мере, в какой мы привязываем ее к определенному масштабу. Например, имеет смысл говорить, что КЭД является полной теорией взаимодействия электронов и фотонов на расстояниях, не меньших 10<sup>-10</sup> см. На таких расстояниях влияние W и Z бозонов еще не проявляется. Это может показаться мелкой придиркой, но поверьте мне, это не так.
В главе 1 я писал про необходимость согласования размерностей и масштабов с физическими измерениями. Осознание необходимости согласовывать физическую теорию с масштабом явления — пространственным, временным или энергетическим — появилось, когда Ханс Бете сделал аппроксимацию, позволившую ему вычислить лэмбовский сдвиг спустя пять дней после совещания на Шелтер Айленде. Бете сумел избавиться от расходимости путем пренебрежения, по физическим соображениям, некоторыми эффектами.
Напомню еще раз, что сделал Бете. Теория относительности и квантовая механика подразумевают, что частицы могут спонтанно «выскакивать» из пустого пространства только затем, чтобы тут же исчезнуть, если они это делают в течение очень короткого промежутка времени, который не может быть измерен в силу принципа неопределенностей. Тем не менее расчет лэмбовского сдвига продемонстрировал, что эти частицы могут влиять на реально измеряемые свойства обычных частиц, например на свойства атома водорода. Проблема, однако, состояла в том, что учет влияния всех возможных виртуальных частиц с произвольно высокими энергиями делал расчет атома водорода математически невыполнимым. Бете утверждал, что следует исключить из расчета те виртуальные частицы, энергия которых превышает некую величину. В то время он понятия не имел, что это должна быть за величина и из каких соображений ее следует выбирать, поэтому он выбрал в качестве предельного значения энергии энергию покоя электрона.
Разработав окончательный вариант теории, Фейнман, Швингер и Томонага показали, что вклад виртуальных частиц высоких энергий действительно можно последовательным образом исключить. И их теория начала давать разумные результаты — как и должна поступать любая разумная теория. В конце концов, если бы вклад всех процессов, происходящих на расстояниях и временах, много меньших масштаба атомных явлений, в окончательный результат был существенным, у нас не осталось бы ни малейшей надежды построить применимую на практике физическую теорию. Это все равно как если бы для описания движения мяча нам понадобилось учесть все силы, действующие на каждую молекулу мяча в течение каждой наносекунды его полета.
Со времен Галилея отбрасывание несущественного было неявным принципом построения любой физической теории. Этот принцип остается справедливым даже при выполнении очень точных расчетов. Вернемся к мячу. Даже вычисляя его положение с точностью до долей миллиметра, мы по-прежнему предполагаем, что его можно рассматривать как мяч, хотя на самом деле он представляет собой набор из примерно 10<sup>24</sup> атомов, каждый из которых сложным образом колеблется и вращается относительно других атомов во время полета мяча. |