К сожалению, часто самые трудные вещи являются одновременно и самыми важными, поскольку количество цифр определяет порядок числа. Допустим, мы умножаем 40 на 40. Какой ответ будет ближе к правильному: 160 или 2000? Ни одно из этих чисел не является точным значением произведения, но второе гораздо ближе к правильному ответу 1600. Если бы работодатель, пообещав платить вам по 40 долларов в час, заплатил за 40 часов работы только 160 долларов, тот факт, что он потерял всего лишь один нолик, был бы для вас слабым утешением, не правда ли?
Чтобы избежать подобных ошибок, физики придумали разделять числа на две части, одна из которых сообщает вам порядок числа, а вторая — точное значение в пределах этого порядка. Такая запись числа называется экспоненциальной. Она позволяет избежать записи огромного количества нулей, когда необходимо выразить в привычных нам единицах такие значения, как, например, размер наблюдаемой части Вселенной, составляющий около 1 000 000 000 000 000 000 000 000 000 сантиметров.
Глядя на это число, любой скажет, что оно очень велико, но насколько велико?
В экспоненциальной нотации используются степени числа 10. Запись 10<sup>n</sup> означает число, начинающееся с единицы, за которой следуют n нулей. Например, число 100 в экспоненциальной нотации записывается как 10<sup>2</sup>, а запись 10<sup>6 </sup>представляет число, начинающееся с единицы, за которой следуют шесть нулей, то есть один миллион. Оценивая величину таких чисел, достаточно помнить, что, скажем, число 10<sup>6</sup> содержит в своей записи на один ноль больше, чем число 10<sup>5</sup>, и, следовательно, оно больше него в 10 раз. Для очень маленьких чисел, таких как размер атома, выраженный в сантиметрах — около 0,000000001 см, — ученые используют отрицательные показатели степени. Запись 10<sup>-n</sup> означает единицу, деленную на 10<sup>n</sup>, то есть число типа 0,000… 0001, где единица стоит на n-й позиции после запятой. Таким образом, одна десятая будет записана как 10<sup>-1</sup>, а одна миллиардная — как 10<sup>-9</sup>.
Любое произвольное числовое значение может быть записано как число в диапазоне от 1 до 10, умноженное на десять в какой-то степени. Число 100 записывается как 10<sup>2</sup>, в то время как число 135 можно представить в виде произведения 1,35∙100 и в экспоненциальной нотации записать как 1,35∙10<sup>2</sup>. Второй сомножитель в этой записи называется порядком числа, он дает нам представление о количестве цифр в обычной записи. Таким образом, числа 100 и 135 имеют один и тот же порядок. Первый сомножитель называется мантиссой — он говорит нам о том, где именно находится число в пределах указанного порядка, то есть является оно, например, числом 100 или числом 135.
Для физика порядок числа является наиболее важной характеристикой, поскольку он показывает масштаб явления, и экспоненциальная запись в этом отношении очень удобна, не говоря уже о том, что она просто короче. Гораздо легче воспринять число в форме 1,45962∙10<sup>13</sup>, чем 1 459 620 000 000 или «один триллион четыреста пятьдесят девять миллиардов шестьсот двадцать миллионов». Я рискну сделать еще более сильное утверждение: числа, представляющие физический мир, имеют смысл только тогда, когда они записаны в экспоненциальной форме.
Есть и другие несомненные преимущества экспоненциальной записи. В частности, она сильно упрощает манипуляции с числами. Например, вы хотите перемножить два числа, скажем, 100 и 100. Традиционная запись выглядит так: 100x100 = 10 000. В экспоненциальной форме нахождение произведения 100х100 сведется к следующей манипуляции: 10<sup>2</sup>х10<sup>2</sup> = 10<sup>(2+2)</sup> = 10<sup>4</sup> — фактически, мы заменяем умножение сложением. |