Изменить размер шрифта - +

Но с этим понятием имеется одна фундаментальная проблема. Падающий мяч ускоряется. Его скорость зависит от его координат. Однако мы же только что подвели постоянство скорости света под фундамент специальной теории относительности. Свет всегда должен путешествовать с одной и той же скоростью, независимо от того, как движется наблюдатель по отношению к лучу света и по отношению к другим наблюдателям. Поэтому наблюдатель, располагающийся в левой верхней части лифта, должен при измерении скорости света получить значение с. Но наблюдатель в правой нижней части лифта должен получить то же самое значение с, несмотря на то что к моменту, когда свет дошел до него, его скорость успела возрасти по сравнению со скоростью первого наблюдателя.

Как примирить эти результаты с выводом, что луч света в лифте изгибается, потому что он «падает»? Кроме того, поскольку Эйнштейн постулировал, что в гравитационном поле должны иметь место те же явления, что и в ускоряющемся лифте, свет в гравитационном поле тоже должен «падать». Это может произойти, только если скорость света будет разной в разных точках пространства!

Есть только один способ примирить два противоречащих друг Другу поведения света: искривление светового луча под действием гравитационного поля или внутри ускоряющегося лифта и постоянство скорости света для любого наблюдателя: масштаб линеек и ход часов различных наблюдателей, даже находящихся в одной системе отсчета — в ускоряющемся лифте или на поверхности Земли, — должны зависеть от их положения в пространстве и времени!

Что в этом случае происходит с пространством и временем? Чтобы понять это, вернемся снова в нашу пещеру. Предположим, что на плоской стене пещеры изображена карта, на которую нанесен путь самолета, следующего из Нью-Йорка в Бомбей:

Можем ли мы добиться того, чтобы кривая траектория на этом рисунке выглядела локально как прямая линия, вдоль которой самолет двигался бы равномерно и прямолинейно? Один из способов — позволить линейкам изменять свою длину в зависимости от широты места. Как вы, возможно, заметили, Гренландия на этой карте выглядит больше Европы. Если линейка в полярных широтах имеет большую длину, чем в средних, то географ, отправившись с этой линейкой в Гренландию и измерив ее размеры, что называется, «на месте», а затем проделав то же самое в Европе, убедится, что при подобных локальных измерениях Гренландия оказывается гораздо меньше Европы.

Для обитателя пещеры такое предложение может показаться безумным, но не для нас, знающих, что Земля круглая. Предложенное решение эквивалентно предположению, что поверхность, на которой изображена карта, на самом деле неплоская, а приведенное изображение представляет собой проекцию на плоскость стены пещеры карты, нарисованной на сфере. И на реальной земной сферической поверхности расстояния при приближении к полюсам действительно сокращаются по сравнению с изображенными на плоской карте. Если перенести траекторию самолета на глобус, то сразу же станет очевидно, что она представляет собой кратчайший путь из Нью-Йорка в Бомбей, и самолет действительно будет двигаться вдоль нее с постоянной скоростью и не меняя направления.

Какой из этого следует вывод? Если мы хотим быть последовательными, мы должны признать, что для разрешения упомянутого ранее противоречия пространство-время в системе отсчета, движущейся с ускорением или находящейся в гравитационном поле, должно быть искривленным. Почему же мы не ощущаем эту кривизну, если она на самом деле существует? Потому что мы всегда воспринимаем пространство локально в небольшой окрестности. Представьте себе таракана, живущего в Канзасе. Мир для него представляет собой плоскую, как доска, двухмерную поверхность. Только позволив себе роскошь посмотреть на эту поверхность из трехмерного пространства, можно увидеть, что на самом деле она представляет собой поверхность сферы. Аналогично, чтобы увидеть кривизну трехмерного пространства, надо посмотреть на него из четырехмерного, но это так же невозможно для нас, как невозможно для таракана, обреченного вечно ползать по поверхности земли, — трехмерное пространство находится за пределами его восприятия.

Быстрый переход