В привычном окружающем нас мире кривизна пространства настолько мала, что ее последствия практически незаметны, и это является одной из причин, по которой понятие искривленного пространства кажется нам чуждым. Путешествуя из Нью-Йорка в Лос-Анджелес, луч света отклоняется из-за искривления пространства, вызываемого массой Земли, всего на один миллиметр. Однако если время путешествия света велико, то даже небольшой эффект может привести к заметным последствиям. Возьмем, к примеру, сверхновую 1987 года, о которой я уже упоминал как об одном из самых интересных астрономических событий XX века. Нетрудно посчитать — и мы с моим коллегой действительно подсчитали и поразились настолько, что написали об этом научную статью, — что небольшой кривизны пространства, сквозь которое свет от сверхновой 1987 года добирается до нас с другого конца Галактики, оказалось достаточно, чтобы задержать его прибытие на девять месяцев! Если бы пространство не было искривлено, мы увидели бы вспышку сверхновой 1987 года еще летом 1986-го.
Финальным испытательным полигоном для идей Эйнштейна стала сама Вселенная. Общая теория относительности описывает не только искривление пространства вблизи массивных тел, но и геометрию всей Вселенной. Если средняя плотность вещества во Вселенной окажется достаточно большой, то пространство может искривиться настолько, что замкнется в гигантский аналог сферы в трехмерном пространстве. Но что еще более важно, в этом случае Вселенной придется рано или поздно остановить свое расширение и начать сжиматься, придя в конечном итоге к Большому сжатию — явлению, обратному Большому взрыву.
Есть что-то зачаровывающее в «закрытой» Вселенной — как называют Вселенную с высокой средней плотностью вещества. Я помню, как, будучи еще студентом, впервые услышал об этом на лекции астрофизика Томаса Голда и запомнил на всю жизнь. В закрытой Вселенной, которая замкнута сама на себя, луч света, движущийся по прямой линии, в конечном итоге вернется в ту точку, из которой он вышел, подобно тому как вернется в исходную точку путешественник, совершивший кругосветное путешествие на поверхности Земли. То есть свет в такой Вселенной никогда не сможет уйти в бесконечность. Когда подобное происходит в меньших масштабах, то есть когда космический объект имеет настолько высокую плотность, что даже свет не может убежать с его поверхности, мы называем его черной дырой.
Если наша Вселенная закрыта, то мы сами живем внутри самой настоящей черной дыры! Но не в той, которая показана в диснеевском фильме 1979 года. Суть в том, что чем больше размер черной дыры, тем меньше должна быть плотность вещества, необходимая для ее создания. Черная дыра с массой Солнца будет иметь размер порядка километра и среднюю плотность в сотни миллиардов тонн на кубический сантиметр. Черная дыра с массой, равной массе наблюдаемой части Вселенной, будет иметь размер, сравнимый с размером видимой части Вселенной, при средней плотности всего лишь порядка 10<sup>-29</sup> грамма на кубический сантиметр!
Сегодняшние наблюдательные данные, однако, свидетельствуют о том, что мы живем не внутри черной дыры. По крайней мере, большинство теоретиков считает, что средняя плотность вещества во Вселенной хотя и близка к критической, но все же недостаточна, чтобы закрыть Вселенную. По данным наблюдений, наш мир, скорее всего, избежит Большого сжатия и будет продолжать расширяться вечно. Характер расширения Вселенной более всего соответствует пограничному случаю между открытой и закрытой Вселенными, который носит название плоской Вселенной, и если источником гравитационного притяжения служит материя, то расширение Вселенной будет в этом случае происходить замедляющимися темпами, но никогда не остановится. Так как для плоской Вселенной необходима средняя плотность вещества примерно в 100 раз больше наблюдаемой, теоретики пришли к выводу, что на 99% Вселенная состоит из темной материи, невидимой для телескопов, о чем я уже рассказывал в главе 3. |