Еще одним способом проверить геометрию Вселенной является измерение зависимости угла, под которым виден объект известного размера, от расстояния до этого объекта. На плоскости угол, под которым виден объект, будет уменьшаться с ростом расстояния:
Однако на сфере картина будет совсем иной:
В начале 1990-х годов было предпринято исследование зависимости угла, под которым видны очень компактные объекты в центрах галактик, от расстояния до них. Измерения производились при помощи радиотелескопов, и в обзор попали галактики, находящиеся от нас на расстояниях вплоть до половины радиуса наблюдаемой Вселенной. Полученная зависимость снова свидетельствовала в пользу того, что пространство нашей Вселенной плоское. Однако мы с коллегой показали, что и этот тест содержит неопределенность, связанную с возможной эволюцией исследуемых объектов.
В 1998 году неожиданно появилась совершенно новая возможность определения геометрии Вселенной на основе измерений неоднородности фона космического микроволнового излучения, называемого также реликтовым излучением, являющегося отголоском Большого взрыва.
Реликтовое излучение, впервые открытое в 1965 году, приходит к нам со всех сторон. Оно возникло почти 14 миллиардов лет назад и последний раз эффективно взаимодействовало с веществом, когда Вселенной было всего лишь 100 000 лет от роду. В ту давнюю эпоху это излучение имело температуру примерно 3000 градусов по абсолютной шкале Кельвина. В результате сегодня это излучение дает нам картину распределения материи и излучения в ранней Вселенной. Так как излучение, которое мы видим сегодня, приходит равномерно со всех сторон, оно «рисует» для нас сферическую поверхность, существовавшую почти 14 миллиардов лет назад, когда это излучение в последний раз провзаимодействовало с веществом.
Эта сферическая поверхность предоставляет нам идеальную возможность использовать уже описанный ранее геометрический метод, если найти какой-нибудь эталон длины на этой сфере, угловой размер которого мы могли бы затем измерить. К счастью, природа предоставила именно такой эталон. Поскольку сила гравитации — это всегда сила притяжения, то любой фрагмент вещества всегда стремится сжаться под действием собственной гравитации, если только его не удерживает от этого какая-то дополнительная сила. Прежде чем Вселенная остыла до температуры ниже 3000 Кельвинов, вещество состояло главным образом из сильно ионизированного водорода, который интенсивно взаимодействовал с излучением, оказывающим давление на вещество. Это давление предотвращало сжатие любого фрагмента вещества, если размеры этого фрагмента не превосходили некоторое критическое значение.
Вы спросите, что это за критическое значение? Сейчас объясню. Когда Вселенной было всего 100 000 лет, свет мог путешествовать по ней на расстояние не более 100 000 световых лет. Поскольку ничто не может распространяться быстрее света, то и гравитационное взаимодействие могло осуществляться только между телами, расстояние между которыми не превышало 100 000 световых лет. Это значит, что в это время максимальный размер неоднородностей вещества не мог превышать 100 000 световых дет. Когда же Вселенная остыла до 3000 Кельвинов, водород рекомбинировал и перестал взаимодействовать с излучением. Давление излучения упало практически до нуля, и первоначальные неоднородности начали сжиматься под действием собственной гравитации. И первоначальный размер этих неоднородностей оказался как раз порядка 100 000 световых лет.
Измерив угловые размеры неоднородностей фона реликтового излучения, астрофизики в 1998 году пришли к выводу, что наша Вселенная все же плоская. Самое интересное, что наблюдаемое распределение неоднородностей с высокой точностью совпало с предсказанием теоретической модели, построенной в предположении, что Вселенная плоская (см. с. 192).
В то же время прямой подсчет общей массы светлой и темной материи, содержащейся в галактиках и скоплениях галактик, окончательно показал, что она дает только 30% плотности энергии, необходимой для того, чтобы геометрия Вселенной была плоской. |