Я никогда не забуду как мой школьный учитель физики в шутку говорил, что в физике есть две вещи, доказывающие существование Бога.
Во-первых, это вода, которая практически единственная из всех веществ, замерзая, расширяется. Если бы вода не обладала такой особенностью, то водоемы зимой промерзали бы до дна, рыбы не могли бы переживать зиму и, вероятно, никогда не доэволюционировали бы до людей. Во-вторых, коэффициент расширения бетона практически такой же, как коэффициент расширения стали. Если бы это было не так, то современные небоскребы не пережили бы зимы, потому что стальная арматура разорвала бы бетонные конструкции. Должен признаться, что второй пример мне не кажется удачным, потому что, если бы у стали и бетона были разные коэффициенты расширения, мы бы попросту не стали их использовать в строительстве, а нашли бы другие, более подходящие материалы.
В первом примере интересен тот факт, что вода — одно из самых распространенных веществ на Земле — ведет себя при замерзании иначе, чем большинство других веществ.
Если же отвлечься от того, что вода расширяется при замерзании, то во всех остальных отношениях она является прекрасным примером поведения различных веществ при изменении физических условий. При встречающихся на Земле температурах вода может переходить из жидкого состояния в твердое или в газообразное. Каждое такое изменение называется фазовым переходом, потому что при этом происходит изменение фазы вещества: из твердой фазы в жидкую, из жидкой в газообразную и обратно. Будет справедливым утверждение, что если мы понимаем механизм и условия, управляющие фазовыми переходами любого вещества, то мы понимаем существенную часть окружающих нас физических явлений.
Главная трудность состоит в том, что в области фазового перехода вещество ведет себя наиболее сложным образом. Когда вода закипает, в ней образуются турбулентные вихри, зарождаются пузырьки пара, которые растут и взрывообразно лопаются на поверхности. Однако в этой хаотической сложности поведения часто содержатся семена порядка. В то время как внутреннее строение коня может показаться безнадежно сложным, простое масштабирование позволяет нам выделить некоторые его свойства, не требующие для своего объяснения углубления во все детали. Аналогично, безнадежно пытаться описать поведение каждого пузырька пара в кастрюле с кипящей водой, но мы можем выделить несколько универсальных процессов, всегда происходящих, когда, скажем, вода кипит при определенной температуре и давлении, и изучить их путем масштабирования.
Например, когда вода кипит при нормальном атмосферном давлении, мы можем выбрать наугад небольшой объем внутри кастрюли и спросить себя: будет ли этот объем содержать пар или жидкую воду? В небольших масштабах описание окажется очень сложным. Очевидно, что не имеет смысла спрашивать про отдельную молекулу, представляет она собой жидкость или газ, потому что жидкое или газообразное состояние — это свойство множества молекул, характеризующееся, например, тем, близко или далеко они в среднем находятся друг от друга. Очевидно, что для нескольких молекул этот вопрос также не имеет смысла, потому что в процессе движения и столкновений молекулы могут находиться и в жидкости, и в газе, как далеко, так и близко друг от друга. Но как только рассматриваемый нами объем начинает содержать достаточно много молекул, чтобы можно было говорить об их усредненном поведении, вопрос об агрегатном состоянии воды приобретает смысл.
Когда вода кипит при нормальных условиях, пузыри водяного пара и жидкость сосуществуют совместно. Обычно говорят, что при температуре 100 °С на уровне моря вода претерпевает фазовый переход первого рода. Любой макроскопический объем воды при температуре, точно соответствующей точке кипения, по прошествии некоторого времени приходит либо в газообразную, либо в жидкую фазу Оба варианта являются равновероятными. При температуре чуть ниже точки кипения вода в любом пробном объеме всегда будет обнаруживаться в жидком состоянии, при температуре чуть выше точки кипения — в газообразном. |