Таким образом, для изучения любых изменений, которые могут происходить со сферой, нам необходимо менять всего лишь один параметр. Обобщая вышесказанное: чем большим количеством симметрии обладает объект, тем меньше параметров необходимо для его полного описания.
Сложно переоценить важность этого свойства симметрии, и я подробнее расскажу о нем позже. Сейчас же обсудим вопрос, как из наличия симметрии следует запрет чего-либо. Одно из наиболее важных свойств нашего мира, на которое обратил внимание недоумевающего Ватсона Шерлок Холмс, заключается в том, что некоторые вещи в нем никогда не происходят. Мяч никогда не начинает сам по себе скакать по лестнице на второй этаж или катиться вверх по пандусу. Наполненный водой чайник никогда не закипит сам по себе, маятник никогда не поднимется выше, чем он поднимался на предыдущем периоде колебаний. Все эти запреты являются следствиями наличия в природе определенных симметрии.
Понимание этого факта выкристаллизовалось в конце XVIII — начале XIX века из классических работ по математической физике француза Жозефа Луи Лагранжа и англичанина Уильяма Роуэна Гамильтона, создавших обобщенное математическое описание ньютоновской механики. Плодами их трудов воспользовалась в начале XX века немецкая женщина — талантливый математик Эмми Нётер. К сожалению, ее острый интеллект не облегчил ей жизнь в человеческом обществе — после прихода в 1933 году к власти нацистов она была изгнана с математического факультета Гёттингенского университета, несмотря на заступничество величайшего математика того времени Давида Гильберта. Он безуспешно пытался убедить университетское начальство, что наука не знает национальностей и рас, но руководители университета предпочли проявить лояльность к новой власти.
В теореме, носящей имя Нётер, содержится математический результат, имеющий глубокое фундаментальное значение для всей физики. Переформулированная на языке физики, теорема Нётер гласит следующее: если уравнения, описывающие динамическое поведение физической системы, не изменяются при каких-то преобразованиях этой системы, то для каждого такого преобразования должна существовать физическая величина, которая в этой системе сохраняется с течением времени.
Эта теорема сильно упрощает объяснение некоторых вещей, понятное изложение которых наталкивается на большие трудности у популяризаторов науки и даже у отдельных авторов учебников, поскольку она позволяет легко и просто доказать, почему какие-то явления невозможны.
Рассмотрим, например, вечный двигатель, так часто изобретаемый сумасшедшими учеными. Как я уже рассказывал в главе 1, такие машины могут иметь чрезвычайно сложное устройство, что позволяет запудривать мозги легковерным инвесторам.
Стандартным объяснением, почему подобные машины не могут работать, является отсылка к закону сохранения энергии. Большинство людей имеют достаточно четкое интуитивное представление об энергии, поэтому мы можем легко объяснить им причину невозможности такой машины.
Вспомните рисунок машины, который я приводил в первой главе. Как я тогда объяснял, после совершения полного цикла все детали машины должны встать на те же самые места и вернуться в те же самые положения, в которых они были в начале. Если машина в начале цикла была неподвижна, она должна быть неподвижной и в конце, в противном случае энергия машины в конце цикла будет больше ее энергии в начале. Энергия не берется из ниоткуда, и если общая энергия машины не изменилась, то она не могла произвести никакой работы.
Но наиболее упертые изобретатели могли бы возразить: «Почему вы так уверены в законе сохранения энергии? Что делает этот закон таким особенным, что он не может быть нарушен? Да, все известные эксперименты подтверждают закон сохранения энергии, но с чего вы решили, что поставили все возможные эксперименты? Эйнштейна тоже поначалу считали сумасшедшим!»
В этом возражении есть глубокий смысл. Мы не должны ничего принимать на веру. |