Изменить размер шрифта - +
И наоборот, начав вращение с раскинутыми в стороны руками, фигуристка может ускорить вращение, прижав руки к телу. Так закон сохранения момента импульса помогает фигуристам завоевывать олимпийские медали.

В природе есть и другие сохраняющиеся величины, законы сохранения которых возникают из симметрии, отличных от пространственно-временных. К таким величинам относится, например, электрический заряд. Я вернусь к этому позже. Сейчас же попробуем разобраться с еще одним странным аспектом инвариантности законов природы относительно поворота. Он имеет отношение к одной особенности инвариантности вращения, которая проявляется не всегда. Например, несмотря на то что основные законы движения инвариантны относительно поворота, то есть не существует предпочтительного направления, в котором бы законы выполнялись как-то иначе, чем в остальных, мир относительно поворота не инвариантен. Если бы он был инвариантен, мы не смогли бы дойти даже до продуктового магазина, потому что все направления были бы для нас одинаковыми. Но «лево» выглядит иначе, чем «право», «север» отличается от «юга», «верх» от «низа».

Проще всего объяснить это простым стечением обстоятельств, тем более что так оно и есть. Если бы мы жили в другом месте, то различия между правым и левым, югом и севером были бы для нас совершенно другими. Тем не менее сам факт, что случайное стечение обстоятельств может скрыть от нас фундаментальные симметрии мира, является одной из наиболее важных идей, направляющих развитие современной физики. Чтобы использовать всю мощь таких симметрии, мы должны копать глубже.

Многие из классических примеров скрытой реальности, о которых я рассказывал в предыдущей главе, связаны с идеей, что симметрия может быть скрытой. Эта идея получила настораживающее имя: спонтанное нарушение симметрии, и мы уже столкнулись с подобным нарушением в разнообразных обличиях.

Хорошим примером служит поведение микроскопических «магнитиков» в куске железа, о котором я рассказывал в конце предыдущей главы. При низкой температуре, когда отсутствует внешнее магнитное поле, эти «магнитики», выбирая наиболее энергетически выгодное состояние, выстраиваются в одном направлении, но само направление выбирается случайным образом. В физике электромагнетизма нет ничего, что определяло бы это направление, его нельзя предсказать заранее. Но после того, как направление выбрано, оно приобретает уникальность. Насекомое, чувствительное к магнитным полям, живя внутри такого магнита, будет чувствовать анизотропию своего мира, для него направления на северный полюс магнита и на южный полюс магнита будут выделенными, отличающимися от остальных направлений.

Физический подход позволяет подняться выше случайных, уникальных обстоятельств нашего собственного существования и попытаться выглянуть за их пределы. Во всех известных мне случаях это предполагает поиск истинной симметрии мира. В приведенном выше примере это будет означать, что уравнения, описывающие магнитное поле, должны быть инвариантны относительно поворота, то есть они не должны меняться в случае изменения направления магнитного поля.

Аналогичная ситуация возникает при объединении электромагнитных и слабых взаимодействий. Лежащая в основе электрослабой теории физика не делает различий между безмассовыми фотонами и очень массивными Z бозонами. В действительности, существует глубоко запрятанная симметрия, при которой Z бозон можно заменить на фотон, и все будет выглядеть точно также. В мире же, в котором мы живем, у описывающих эти частицы фуидаментальных уравнений существуют конкретные решения, содержащие конденсат виртуальных частиц, заполняющий пустое пространство, взаимодействуя с которым фотон и Z бозон ведут себя совершенно по-разному.

На языке математики эти результаты можно изложить следующим образом: конкретное решение математического уравнения не обязано сохранять инвариантность относительно тех преобразований, для которых являются инвариантными сами исходные уравнения.

Быстрый переход