Изменить размер шрифта - +

Аналогичная формула есть для π<sub>y</sub>.

Согласно общему подходу, игрок 1 рассматривает стратегии игроков 2, 3, … как не поддающиеся его контролю и выбирает свою стратегию так, чтобы максимально увеличить собственный выигрыш. Следовательно, для каждого заданного множества значений y, z, … выбор игроком 1 значения х максимизирует X = F (x, y, z, …). При использовании дифференциального исчисления условие такой максимизации состоит в том, что производная от X по х при постоянном значении y, z, … (это частная производная) равна нулю. Для особых функций существуют простые формулы, подобные приведенной выше и использованной для квадратичной функции. И даже если алгебраические формулировки или исчисление слишком сложны, есть немало компьютерных программ, которые составят для вас таблицы или построят графики наилучших ответов. Какой бы метод вы ни применили, вы можете найти уравнение оптимального выбора игроком 1 значения x при заданных значениях y, z, …, описывающее функцию наилучшего ответа игрока 1. Аналогичным способом можно найти функции наилучших ответов всех остальных игроков.

Функции наилучших ответов соответствуют числу стратегий в игре и могут быть решены одновременно при условии, что стратегические переменные рассматриваются как неизвестные величины. Это решение и есть равновесие Нэша, которое мы ищем. В одних играх может быть множество решений, обеспечивающих множество равновесий Нэша, в других решение может отсутствовать, что требует дальнейшего анализа, например включения смешанных стратегий.

 

2. Критический анализ концепции равновесия Нэша

 

Хотя равновесие Нэша — важнейшая концепция решения игр с одновременными ходами, оно стало объектом ряда теоретических критических замечаний. В данном разделе мы кратко рассмотрим некоторые из них, а также приведем контраргументы, подкрепляя каждый примером. Отдельные критические замечания противоречат друг другу; есть и подлежащие опровержению при более тщательном анализе игр. Некоторые утверждают, что сама концепция равновесия Нэша неполная, и предлагают дополненные или расширенные концепции с более эффективными свойствами. Мы сформулируем в данном разделе одну из таких альтернатив и укажем еще на несколько в последующих главах. Мы убеждены, что наши объяснения помогут вам заново обрести, хотя и с оговорками, уверенность в целесообразности применения концепции равновесия Нэша. Однако определенные серьезные сомнения остаются неразрешенными, и это говорит о том, что теорию игр пока еще нельзя назвать окончательно сформировавшейся наукой. Но даже этот факт должен воодушевить начинающих специалистов по теории игр, поскольку открывает перед ними широкое поле для новых идей и исследований. Неразвивающаяся наука — мертвая наука.

Давайте начнем с анализа основного фактора привлекательности концепции равновесия Нэша. Большинство игр в этой книге относятся к категории некооперативных, то есть тех, в которых игроки действуют независимо друг от друга. Следовательно, было бы естественно предположить, что если действие игрока нельзя назвать лучшим согласно его системе ценностей (шкале выигрышей) в контексте действий других игроков, то он изменит его. Иными словами, весьма заманчиво предположить, что действие каждого игрока будет представлять собой наилучший ответ на действия остальных игроков. Равновесие Нэша обладает именно таким свойством «одновременных наилучших ответов»; собственно говоря, это и есть его определение. При любом предполагаемом исходе, не являющемся равновесием Нэша, минимум один игрок мог бы добиться более выгодных для себя результатов, переключившись на другое действие.

Такие соображения заставили нобелевского лауреата Роджера Майерсона возразить против критических замечаний в адрес равновесия Нэша, основанных на интуитивной привлекательности использования другой стратегии.

Быстрый переход