Изменить размер шрифта - +

Однако жизни в окрестностях пульсаров, скорее всего, нет. Ведь пульсары представляют собой доживающие свой век звезды, выбрасывающие жесткое радиоизлучение чудовищной силы.

 

Увидеть невидимое

 

В аспекте поиска инопланетных форм жизни куда больший интерес представляют планетные системы у звезд, подобных нашему светилу. Здесь для обнаружения планет чаще всего используется эффект Доплера.

Звезда, имеющая планету, испытывает колебания скорости «к нам — от нас», которые можно измерить, наблюдая доплеровское смещение спектра звезды. На первый взгляд это представляется весьма трудной задачей. Под действием Земли скорость Солнца колеблется на сантиметры в секунду. Под действием Юпитера — на метры в секунду. При этом заметное расширение спектральных линий звезды соответствует разбросу скоростей в тысячи километров в секунду. Следовательно, даже в случае с Юпитером следует измерять смещение спектральных линий на тысячную долю от их ширины! И все же эта задача была блестяще решена.

Новейший метод поиска планет основан на наложении спектра звезды на сильно изрезанный линиями калибровочный спектр. Для калибровки используются пары йода в ячейке, помещаемой перед спектрометром. Температура ячейки поддерживается строго постоянной. Спектрометр выдает суперпозицию двух сильно изрезанных спектров поглощения — звезды и йода. Небольшие смещения спектра звезды приводят к изменениям суперпозиции на всех частотах, что значительно увеличивает точность измерения. В результате удалось получить точность 3 м/с — скорость человека, бегущего трусцой. Сейчас точность инструментов уже приближается к 1 м/с, то есть к скорости идущего человека.

Именно этим методом воспользовались швейцарские астрономы Мишель Майор и Диди Килоз, обнаружив изменение спектра у звезды 51 Пегаса, очень похожей на наше светило и находящейся от нас на расстоянии 14,7 парсека. Расчеты показали, что периодические изменения радиальной скорости имеют амплитуду 120 м/с и, скорее всего, вызваны планетой, имеющей массу, вдвое меньшую, чем Юпитер. Вращается эта планета очень близко от своей звезды — на расстоянии всего 0,05 астрономической единицы (в двадцать раз ближе, чем Земля от Солнца!).

Такая дистанция вызвала недоумение астрономов. На столь малом расстоянии, согласно современным теориям формирования планетных систем, не могла образоваться ни гигантская газовая планета, подобная Юпитеру, ни «каменная» планета больших размеров.

Пытаясь привести практические наблюдения в соответствие с теорией, исследователи выдвинули такое предположение, что некогда планета образовалась на расстоянии, в 100 раз большем. Но потом ее могло сместить с законного места столкновение с каким-либо небесным телом (например, астероидом) или гравитационное влияние другого спутника 51 Пегаса — звезды сравнительно небольших размеров.

Почти сразу после швейцарцев открытие подтвердила группа из Сан-Франциско, которая впоследствии вырвалась в лидеры по числу открытых планет.

Первые кривые измерений радиальной скорости были простыми синусоидами, что соответствует круговым орбитам планет. Однако вскоре обнаружились более сложные кривые — с быстрым подъемом и медленным спуском.

Джеф Марси, лидер группы из Сан-Франциско, рассказывал про впечатление, которое произвела на них первая из этих асимметричных кривых. До того, хоть планетная гипотеза колебаний радиальной скорости и была убедительной, оставались сомнения: может быть, это просто «дыхание» звезды — периодические расширения и сжатия ее оболочки. Но после того, как несинусоидальная кривая отлично «подогналась» вытянутой кеплеровской орбитой планеты, все сомнения отпали.

Кстати, именно группе Марси принадлежит честь открытия планетной системы у звезды 47 Большой Медведицы. Наблюдения и последующие расчеты показывают, что у этой звезды, находящейся от нас на расстоянии 13,5 парсека, имеются две планеты: первая из них по своим размерам более чем вдвое превышает Юпитер и отстоит от звезды на 2,1 астрономических единицы, а вторая, чуть меньше Юпитера, — на 3,73 астрономической единицы.

Быстрый переход