Изменить размер шрифта - +

Серьезная сложность здесь заключается в том, что рассматриваемый поток трехмерен. Существует аналогичное уравнение для жидкости, текущей по плоскости. Физически это может быть либо тонкий слой жидкости между двумя пластинами (считается, что они не вызывают трения), либо такой характер потока в трех измерениях, при котором жидкость движется совершенно идентичным образом вдоль системы параллельных плоскостей. В 1969 г. русский математик Ольга Ладыженская доказала, что для двумерного уравнения Навье — Стокса и двумерного уравнения Эйлера пункты 1 и 2 верны, а 3 и 4 — ложны.

Может показаться удивительным, но для уравнения Эйлера доказательство сложнее, чем для уравнения Навье — Стокса, хотя само уравнение проще, поскольку в нем не учитывается вязкость. Причина, надо сказать, весьма поучительная. Вязкость «снимает» вероятность того, что решение может привести к возникновению сингулярности, а та, в свою очередь, не позволит решению существовать в каждый момент времени. Если условие вязкости отсутствует, этого не происходит, что сказывается на математических характеристиках доказательства существования.

Ладыженская внесла еще одно важное дополнение в наши представления об уравнении Навье — Стокса, доказав не только, что решения существуют, но и что определенные вычислительные гидрогазодинамические модели аппроксимируют их с любой нужной нам точностью.

 

Задачи на приз тысячелетия относятся к несжимаемому потоку, поскольку хорошо известно, что сжимаемые потоки ведут себя отвратительно. В уравнениях движения самолета, к примеру, возникает множество проблем, если самолет движется в потоке воздуха быстрее звука. Это знаменитый «звуковой барьер», очень беспокоивший в свое время инженеров, которые работали над проектами сверхзвуковых истребителей. Эта проблема связана с хорошей сжимаемостью воздуха. Если тело движется сквозь несжимаемую жидкость, оно расталкивает частицы этой жидкости в стороны со своего пути, как если бы это были шарики. Если частицы накапливаются, они замедляют тело. Но в сжимаемой жидкости, где существует предел скорости движения волн (а именно скорость звука), этого не происходит. На сверхзвуковых скоростях, вместо того чтобы расходиться в стороны, воздух скапливается перед самолетом, и его плотность там растет беспредельно. Результат — ударная волна. Математически это нарушение непрерывности давления воздуха, которое резко меняет значение на фронте ударной волны. Физически это звуковой удар: громкий хлопок. Ударная волна, если ее не учитывают, может повредить самолет, так что конструкторы волновались не зря. Однако скорость звука — не непреодолимый барьер, а всего лишь препятствие. Ее существование говорит о том, что уравнение Навье — Стокса для сжимаемой жидкости не обязательно имеет гладкие решения на всем диапазоне времен даже в двух измерениях. Так что в этом случае ответ известен заранее, и он отрицателен.

Математика ударной волны — большой раздел среди уравнений частных производных, несмотря на разрывы в решениях. Хотя уравнение Навье — Стокса само по себе не является хорошей физической моделью для сжимаемых жидкостей, математическую модель можно модифицировать, добавив к уравнениям дополнительные условия, которые помогут учесть ударную волну и нарушение непрерывности в ней. Но в потоке несжимаемой жидкости ударные волны не возникают, так что можно по крайней мере предположить, что в этом случае решения должны существовать для каждого момента времени, каким бы сложным (но обязательно гладким) ни было начальное состояние потока.

Кое-какие положительные результаты для трехмерного уравнения Навье — Стокса уже имеются. Если в начальном состоянии поток характеризуется достаточно маленькими скоростями, т. е. течет вяло и очень медленно, то и первое, и второе утверждения верны. Эти утверждения верны даже при больших скоростях — на протяжении некоторого ненулевого промежутка времени.

Быстрый переход