Получившаяся структура называется группой Морделла — Вейля, и специалисты по теории чисел очень хотели бы иметь возможность вычислять ее. Для этого нужно найти систему генераторов: рациональных решений, из которых при помощи оператора группы могут быть получены все остальные. Если это не удается, то хотелось бы по меньшей мере определить основные характеристики группы, хотя бы ее величину. Здесь, однако, многое еще непонятно. Иногда группа бесконечна и порождает бесконечно много рациональных решений, иногда конечна, и тогда число рациональных решений тоже конечно. Было бы полезно иметь возможность определить, к какой категории относится конкретный случай. Но что нам по-настоящему хотелось бы знать, так это абстрактную структуру группы.
Доказательство Морделла, что конечный список генерирует все решения, говорит о том, что группа должна состоять из конечной группы и решетчатой группы. Решетчатая группа включает в себя все списки целых чисел конкретной конечной длины. Если длина чисел, к примеру, три, то группа состоит из всех списков (m<sub>1</sub>, m<sub>2</sub>, m<sub>3</sub>) целых чисел, и эти списки складываются очевидным образом:
(m<sub>1</sub>, m<sub>2</sub>, m<sub>3</sub>) + (n<sub>1</sub>, n<sub>2</sub>, n<sub>3</sub>) = (m<sub>1</sub> + n<sub>1</sub>, m<sub>2</sub> + n<sub>2</sub>, m<sub>3</sub> + n<sub>3</sub>).
Длина списка называется рангом группы (и геометрически представляет собой размерность решетки). Если ранг группы 0, группа конечна. Если ранг не равен нулю, группа бесконечна. Поэтому, чтобы понять, сколько существует решений, нам необязательно знать полную структуру группы. Достаточно знать ее ранг. Именно об этом говорит гипотеза Берча — Свиннертон-Дайера.
В 1960-е гг., когда компьютеры только-только входили в нашу жизнь, одна из первых таких машин появилась в Кембриджском университете. Называлась она EDSAC, что означало «электронно-счетная машина с запоминающим устройством на линиях задержки». Название показывает, как гордились создатели этой машины устройством ее памяти, посылавшей звуковые волны по трубкам с ртутью и затем направлявшей их вновь к началу. Размером этот компьютер был с большой грузовик. Я хорошо помню, как в 1963 г. мне устроили экскурсию по нему. Цепи компьютера были сделаны на основе тысяч ключей — электронных ламп. Вдоль всех стен стояли широкие стеллажи с запасными лампами, которые то и дело надо было менять — так часто они сгорали.
Питера Свиннертон-Дайера эллиптические кривые интересовали с диофантовой стороны: в первую очередь ему хотелось понять, сколько существовало бы решений, если заменить кривую ее аналогом на конечном поле с простым числом p элементов. Иными словами, ему хотелось изучить применявшуюся Гауссом уловку с работой «по модулю p». При помощи компьютера он вычислял эти числа для большого числа простых и искал среди них интересные закономерности.
Постепенно у него появились определенные подозрения. Его научный консультант Джон Кассельс испытывал сильные сомнения, но по мере появления все новых и новых данных он тоже поверил, что в этой идее что-то есть. Компьютерные эксперименты, проведенные Свиннертон-Дайером, указывали вот на что. У специалистов по теории чисел есть стандартный метод записи любого уравнения в целых числах по определенному модулю — вспомните модулярную арифметику или «арифметику часов» по модулю 12 в главе 2. Поскольку все законы алгебры приложимы в этом варианте арифметики, любое решение первоначального уравнения становится и решением «урезанного» уравнения по этому модулю. Все задействованные числа образуют конечный список — к примеру, для арифметики часов в этом списке всего 12 чисел, — поэтому все решения можно найти методом проб и ошибок. |