Изменить размер шрифта - +
Сама идея десятичной записи уже достигла Европы через текст аль-Хорезми 825 г., названный в латинском переводе «Об индийском счете» (Algoritmi de Numero Indorum), но книга Леонардо стала первой из тех, что были написаны именно для того, чтобы способствовать внедрению десятичной системы в Европе. Значительная часть книги посвящена практической арифметике, в первую очередь операциям по обмену денег. Кроме этого, Леонардо написал еще одну книгу. Она не так известна, хотя во многих отношениях является непосредственным преемником диофантовой «Арифметики». Называется она «Книга квадратов» (Liber Quadratorum).

Подобно Диофанту, Леонардо представлял общие методики через конкретные примеры. Один из них основывался на вопросе аль-Караджи. В 1225 г. Пизу посетил император Фридрих II. Он был наслышан о Леонардо и его математических занятиях и, судя по всему, решил, что будет забавно объявить математический турнир и посмотреть на него в деле. В то время подобные публичные состязания были обычным делом. Участники задавали друг другу вопросы. В команду императора входили Джованни из Палермо и магистр Теодор. В команду Леонардо входил только сам Леонардо. Команда императора попросила Леонардо найти такой квадрат, который остался бы квадратом, если вычесть из него или прибавить к нему 5. Как обычно, все числа должны были быть рациональными. Иными словами, соперники хотели, чтобы Леонардо доказал, что 5 — число конгруэнтное, отыскав конкретное рациональное число x, для которого x − 5, x и x + 5 являются квадратами.

Эту задачу ни в коем случае нельзя назвать простой — самое краткое ее решение таково:

 

 

В этом случае

 

 

Леонардо нашел решение и включил его в «Книгу квадратов». Он получил ответ при помощи общей формулы, связанной с формулой Евклида/Диофанта для пифагоровых троек. Из нее Леонардо получил три целых квадрата с общей разностью 720, а именно: 31², 41² и 49². Затем он разделил их на 12² = 144, чтобы получить три квадрата с общей разностью 720/144, что равняется 5. В терминах пифагоровых троек можно взять треугольник со сторонами 9, 40 и 41 и площадью 180 и разделить на 36. Получим треугольник со сторонами 20/3, 3/2, 41/6. Площадь его равняется 5.

Именно у Леонардо мы находим латинское слово congruum для обозначения набора из трех квадратов в арифметической прогрессии. Позже Эйлер пользовался словом congruere, «сходятся». Первые десять конгруэнтных чисел и соответствующие простейшие пифагоровы тройки приведены в табл. 3. Никаких простых закономерностей здесь не видно.

 

Таблица 3. Первые десять конгруэнтных чисел и соответствующие им пифагоровы тройки

 

Первоначальным прогрессом в этом вопросе мы обязаны в первую очередь арабским математикам, показавшим, что числа 5, 6, 14, 15, 21, 30, 34, 65, 70, 110, 154 и 190, а также еще 18 больших чисел, являются конгруэнтными. Леонардо, Анджело Дженокки (1855) и Андре Жерарден (1915 г.) добавили к этим числам 7, 22, 41, 69, 77 и еще 43 числа, не превосходящих 1000. Леонардо в 1225 г. объявил, что число 1 не конгруэнтно, но не привел никаких доказательств. В 1569 г. Ферма доказал это. К 1915 г. все конгруэнтные числа меньше 100 были определены, но проблема плохо поддавалась решению, и еще в 1980 г. статус многих чисел меньше 1000 оставался неопределенным. О сложности проблемы можно судить по тому, как Л. Бастьен открыл конгруэнтность числа 101. Стороны соответствующего прямоугольного треугольника равны:

 

 

Он нашел эти числа в 1914 г. вручную. К 1986 г., когда считать благодаря компьютерам стало проще, Г. Крамарц нашел все конгруэнтные числа до 2000.

Быстрый переход