Любое квантовое состояние может быть представлено как суперпозиция бесчисленных взаимодействий частиц. К примеру, даже в вакууме есть пары частиц и античастиц, которые на мгновение возникают из небытия и тут же исчезают вновь. Простое столкновение двух частиц порождает умопомрачительный танец, в котором промежуточные частицы появляются и исчезают, мечутся взад и вперед, расщепляются и сливаются. Спасает лишь сочетание двух подходов. Уравнения поля для каждой конкретной фейнмановской диаграммы можно проквантовать, а затем сложить все отдельные вклады и представить себе полный эффект взаимодействия. Более того, самые сложные диаграммы встречаются редко и потому их вклад в общую сумму невелик. Тем не менее здесь есть серьезная проблема. Сумма, если рассматривать ее буквально, бесконечна. Янг и Миллс нашли способ перенормировать расчет таким образом, чтобы исключить бесконечное число слагаемых, которые, по идее, не должны много значить. Осталась конечная сумма, и ее величина очень точно соответствовала реальности. При первом знакомстве эта методика казалась почти непостижимой, но сегодня в ней многое прояснилось.
В 1970-е гг. к делу подключились математики. Майкл Атья обобщил теорию Янга — Миллса на большой класс калибровочных групп. Математика и физика начали подпитываться друг от друга. Работа Эдварда Уиттена и Натана Зайберга над топологическими квантовыми теориями поля породила концепцию суперсимметрии, в которой каждая известная частица имеет «суперсимметричного» партнера: электрону соответствует селектрон, кваркам — скварки. Это предположение упростило математику и позволило сделать кое-какие физические предсказания. Однако никому еще не удалось наблюдать хотя бы одну из этих новых частиц, а некоторые из них, вероятно, уже должны были появиться в экспериментах на Большом адронном коллайдере. В математической ценности этих идей никто не сомневается, а вот их непосредственное значение в физике пока под вопросом. Тем не менее они помогли многое прояснить в теории Янга — Миллса.
Квантовая теория поля — один из наиболее динамично развивающихся передовых рубежей математической физики, поэтому Институт Клэя захотел включить в группу задач тысячелетия что-нибудь из этой области. Выбрали проблему массовой щели. Речь в ней идет о важном математическом вопросе из физики элементарных частиц. Применение полей типа Янга — Миллса для описания элементарных частиц в терминах сильного ядерного взаимодействия сильно зависит от особого квантового свойства, известного как массовая щель. В теории относительности частица, летящая со скоростью света, приобретает бесконечную массу, если только ее масса покоя не равна нулю. Щель в спектре масс позволяет квантовым частицам иметь конечную ненулевую массу, несмотря на то что связанные с ними классические волны движутся со скоростью света. Если массовая щель существует, то любое состояние, не являющееся вакуумом, обладает энергией, превышающей энергию вакуума по крайней мере на некоторую фиксированную величину. Иными словами, существует ненулевой нижний предел массы частицы.
Эксперименты подтверждают существование массовой щели, и компьютерное моделирование уравнений тоже говорит в пользу этой гипотезы. Однако мы не можем считать, что модель соответствует реальности, а затем использовать данные экспериментов (т. е. реальность) для проверки математических свойств модели, потому что в этом случае логика зацикливается. Необходимо теоретическое доказательство. Ключевым шагом здесь стало бы строгое доказательство того, что квантовые версии теории Янга — Миллса существуют. В классическом (неквантовом) ее варианте ученые уже довольно хорошо разобрались, но квантовый аналог осложняется проблемой перенормировки — теми самыми бесконечностями, избавляться от которых приходится при помощи математических уловок.
Один многообещающий подход начинается с того, что непрерывное пространство превращают в дискретную пространственную решетку и записывают для решетки уравнение, аналогичное уравнению Янга — Миллса. |