Симметрия калибровочной группы U(1) играла в их работах фундаментальную роль.
Следующий шаг, объединивший квантовую электродинамику с теорией слабого ядерного взаимодействия, сделали в 1960-е гг. Абдус Салам, Шелдон Глэшоу, Стивен Вайнберг и другие ученые. К электромагнитному полю с его калибровочной симметрией U(1) они добавили поля, связанные с четырьмя элементарными частицами — так называемыми бозонами W<sup>+</sup>, W<sup>0</sup>, W<sup>—</sup> и B<sup>0</sup>. Калибровочные симметрии такого поля, по существу, вращают комбинации этих частиц, порождая другие их комбинации; эти симметрии образуют другую группу, получившую обозначение U(2) — унитарные (U) трансформации в двумерном комплексном пространстве (2), являющиеся также специальными (S) — простое формальное условие. Иными словами, полная калибровочная группа — это U(1) × SU(2), где знак × указывает на то, что две группы действуют независимо на двух разных полях. Результат, получивший название теории электрослабых взаимодействий, потребовал введения сложного математического новшества. Группа U(1) в квантовой электродинамике коммутативна: два проведенных последовательно симметричных преобразования дают один и тот же результат, в каком бы порядке они ни проводились. Это свойство сильно упрощает всю математику, но для группы SU(2) не работает. Так впервые была применена некоммутативная калибровочная теория.
Сильное ядерное взаимодействие вступает в игру при рассмотрении внутренней структуры таких частиц, как протоны и нейтроны. Толчком к большому прорыву в этой области послужила интересная математическая закономерность, наблюдаемая в одном конкретном классе частиц, известных как адроны. Эта закономерность, известная как «восьмеричный путь», вдохновила ученых на создание теории квантовой хромодинамики. Теория постулировала существование скрытых частиц, названных кварками, и использовала их в качестве базовых компонент для целого зоопарка адронов.
Согласно Стандартной модели, все во Вселенной состоит из 16 по-настоящему элементарных частиц, существование которых подтверждено экспериментами на ускорителях. Плюс 17-я частица, поисками которой в настоящее время занят Большой адронный коллайдер. Из частиц, известных еще Резерфорду, ранг элементарных сохранили только две: электрон и фотон. Протон и нейтрон, напротив, состоят из кварков. Это название пустил в оборот Марри Гелл-Ман, позаимствовав его из романа Джеймса Джойса «Поминки по Финнегану». Гелл-Ман хотел, чтобы слово quark произносилось как «корк», однако фраза из романа Джойса, в которой оно встречается: «Три кварка для мастера Марка!» — подразумевает, что слово quark должно рифмоваться с именем Марк. Тем не менее Гелл-Ман нашел способ обосновать свое намерение. Сегодня в английском языке распространены оба варианта произношения.
В Стандартной модели предполагается существование шести кварков, объединенных попарно. Названия кварков довольно забавны: верхний/нижний, очарованный/странный, истинный/прелестный. Кроме того, модель предусматривает шесть лептонов, тоже парных: электрон, мюон и таон (который чаще называют по старинке тау-частицей) и соответствующие им нейтрино. Все эти 12 частиц называют фермионами — в честь Энрико Ферми. Частицы удерживаются вместе силами четырех типов: это гравитация, электромагнетизм, сильное и слабое ядерные взаимодействия. Оставив в стороне гравитацию, которую до сих пор не удалось полностью согласовать с квантовой картиной мира, получаем три силы. В физике элементарных частиц действие сил осуществляется посредством обмена частицами, которые их «переносят» или «передают». Традиционная аналогия — теннисисты, которых удерживает в пределах площадки их обоюдное внимание к мячу. Фотон переносит электромагнитное взаимодействие, Z— и W-бозоны переносят слабое ядерное взаимодействие, а посредством глюона передается сильное ядерное взаимодействие. |