Может быть, они собрались там послушать рок-концерт. Если посмотреть из пролетающего вертолета, толпа людей похожа на жидкость, хлюпающую в поле — часто буквально, как, к примеру, на фестивале в Гластонбери: известно, что поле там превращается в море грязи. Внизу, на земле, становится ясно, что на самом деле жидкость — это бурлящая масса отдельных частиц: людей. Или, возможно, тесных небольших групп людей, таких как несколько гуляющих вместе друзей, которые представляют собой неделимую единицу, или как группа незнакомых людей, объединенных общей целью — к примеру, походом в бар. Но невозможно точно смоделировать толпу, просто сложив воедино поведение отдельных людей (то, как они вели бы себя в одиночестве). Направляясь к бару, одна группа преграждает путь другой, группы сталкиваются и перемешиваются. Разработка эффективной квантовой теории поля напоминает моделирование поведения толпы, в которой роль людей выполняют локализованные квантовые волновые функции.
К концу 1920-х гг. физики убедились (в частности, при помощи подобных рассуждений), что, как бы трудна ни была задача, квантовую механику придется расширять, чтобы она могла описывать не только частицы, но и поля. Естественной отправной точкой для этого стало электромагнитное поле. Необходимо было каким-то образом квантовать и электрический, и магнитный его компоненты, т. е. переписать его характеристики на языке квантовой механики. Но тут возникали сложности. Математический аппарат квантовой механики был незнаком и к тому же выглядел крайне нефизически. То, что можно было увидеть и измерить, уже не выражалось добрыми старыми числами, а соответствовало операторам гильбертова пространства: математическим правилам, разработанным для работы с волнами. Эти операторы нарушали обычные постулаты классической механики. При перемножении двух чисел результат не зависит от их порядка; к примеру, 2 × 3 и 3 × 2 — это одно и то же. Это свойство сложения, известное как коммутативность, нарушается для многих пар операторов — примерно так же, как надеть сначала носки, а затем ботинки, не то же самое, что сначала надеть ботинки, а затем носки. Числа — существа пассивные, а вот операторы — активны. Действие, которое вы произведете первым, подготавливает сцену для дальнейших событий.
Коммутативность — очень приятное математическое свойство. Его отсутствие раздражает и мешает, поэтому, в частности, квантование поля оказалось такой хитрой задачей. Тем не менее она решаема. Электромагнитное поле удалось квантовать в несколько этапов. Начался этот процесс с теории электрона Дирака (1928 г.), а завершили его Синъитиро Томонага, Джулиан Швингер, Ричард Фейнман и Фримен Дайсон в конце 1940-х — начале 1950-х гг. Получившаяся в результате теория стала называться квантовой электродинамикой.
Точка зрения, использованная при разработке этой теории, давала подходы к методу, который мог бы применяться и более широко. В основе его лежала идея, восходившая непосредственно к Ньютону. Пытаясь решить уравнения, связанные с законом Ньютона, ученые открыли несколько полезных общих принципов, известных как законы сохранения. Дело в том, что при движении системы массивных тел некоторые величины остаются неизменными. Самая известная из них — энергия, которая бывает двух видов: кинетическая и потенциальная. Кинетическая энергия определяется тем, насколько быстро движется тело, а потенциальная — представляет собой работу, проделанную определенными силами. Когда камень падает со скалы, он как бы обменивает потенциальную энергию, связанную с тяготением, на кинетическую. Говоря обычным языком, он падает и ускоряется. Кроме этого, сохраняются такие величины, как импульс, равный произведению массы на скорость, и момент импульса, связанный со скоростью вращения тела. Сохраняющиеся величины связывают различные переменные, используемые для описания системы, и таким образом уменьшают их число. |