Это очень полезно при решении уравнений, как мы уже видели в главе 8, где речь шла о задаче двух тел.
К началу XX в. ученые разобрались в том, откуда взялись законы сохранения. Эмми Нетер доказала, что каждая сохраняющаяся величина соответствует непрерывной группе симметрий в уравнениях. Симметрия — это математическое преобразование, при котором уравнения не меняются. Все симметрии образуют группу с операцией «провести одно преобразование, затем другое». Непрерывная группа — это группа симметрий, определенная единственным действительным числом. К примеру, вращение вокруг заданной оси есть симметрия, и угол вращения может задаваться любым действительным числом, поэтому вращения — на все возможные углы — вокруг заданной оси образуют непрерывную группу. Из сохраняющихся величин с этой симметрией связан момент импульса, или вращательный момент. Точно так же сохранение импульса связано с непрерывной группой перемещений в заданном направлении. А как насчет энергии? Ее сохранение связанно с временны́ми симметриями — уравнения неизменны в любой момент времени.
Попытавшись унифицировать фундаментальные силы природы, физики убедились, что ключ к единой теории — именно симметрии. Первым такая унификация удалась Максвеллу, который соединил электричество и магнетизм в единое электромагнитное поле. Максвелл сделал это без привлечения симметрии, но вскоре стало ясно, что в его уравнениях присутствует особый вид симметрии, которого прежде никто не замечал: калибровочная симметрия. Создавалось впечатление, что она может стать стратегическим рычагом, при помощи которого ученым удастся открыть путь к более общим квантовым теориям поля.
Вращение и перенос — глобальные симметрии: они равно применимы в любой точке пространства и времени. Вращение вокруг определенной оси поворачивает на один и тот же угол каждую точку пространства. Не таковы калибровочные симметрии: это местные симметрии, они могут меняться от одной точки пространства к другой. В случае электромагнетизма местные симметрии — это смена фазы. Колебания электромагнитного поля в определенной точке обладают амплитудой (это размах колебаний) и фазой (это момент, в который колеблющаяся величина достигает своего максимума). Если взять решение уравнений поля Максвелла и в каждой точке поменять фазу, то получится другое решение (если, конечно, вы внесете в описание поля соответствующее компенсирующее изменение, включающее местный электромагнитный заряд).
Калибровочные симметрии ввел в обращение Герман Вейль в безуспешной попытке добиться дальнейшей унификации электромагнетизма и общей теории относительности, т. е. электромагнитных и гравитационных сил. Название появилось в результате недопонимания: он считал, что правильная местная симметрия должна означать изменение пространственного масштаба, т. е. «калибровку». Из этой идеи ничего не получилось, но логика квантовой механики заставила Владимира Фока и Фрица Лондона предложить другой тип местной симметрии. Квантовая механика формулируется с использованием не только действительных, но и комплексных чисел, и каждая квантовая волновая функция имеет комплексную фазу. Значимые местные симметрии вращают фазу на любой угол на комплексной плоскости. В принципе, эта группа симметрий включает в себя все вращения, но в комплексных координатах все они представляют собой «унитарные трансформации» (U) в пространстве с одним комплексным измерением (1), поэтому группа, сформированная этими симметриями, обозначается как U(1). Формальные обозначения здесь не просто математическая игра: они позволили физикам записать, а затем и решить уравнения для заряженных квантовых частиц, движущихся в электромагнитном поле. Именно благодаря этому Томонага, Швингер, Фейнман и Дайсон разработали первую релятивистскую квантовополевую теорию электромагнитных взаимодействий: квантовую электродинамику. |