Изменить размер шрифта - +
Они использовали при этом комбинаторные методы, основанные на сетях особого рода и достаточно сложные, чтобы заполнить собой целую книгу.

При g = 0, т. е. для карт на сфере, формула Хивуда дает четыре краски, но его доказательство достаточности на сфере не работает. Несмотря на значительный прогресс для поверхностей хотя бы с одним отверстием, первоначальная теорема о четырех красках никуда не делась. Немногочисленные математики, которые готовы были бросить свои силы на решение этого вопроса, настроились, говоря языком военных, на длительную осаду. Задача оказалась неприступной крепостью, но желающие завоевать ее надеялись построить еще более мощные осадные машины и понемногу, по кусочку, разбить и обрушить стены. Машины были построены, но стены продолжали стоять. Однако атакующие постепенно все больше узнавали о том, как не следует решать эту задачу, и о препятствиях, возникающих на этом пути. Таким образом неудачи создали почву для появления новой стратегии. Она стала естественным продолжением методов Кемпе и Хивуда и состоит из трех частей. Я перечислю их, используя понятия двойственных сетей, поскольку на сегодня это стандартный подход.

1. Рассмотреть минимальный контрпример.

2. Составить список неустранимых конфигураций — меньших сетей, таких, что любой минимальный контрпример обязательно должен содержать какую-нибудь из них.

3. Доказать, что каждая из неустранимых конфигураций сократима. Иными словами, если меньшая сеть, полученная при удалении неизбежной конфигурации, может быть раскрашена в четыре цвета, то эти цвета можно перераспределить таким образом, что при возвращении неустранимой конфигурации раскраску в четыре цвета можно распространить и на нее тоже.

 

Объединив эти три шага, мы можем доказать, что минимального контрпримера не существует. Если бы он существовал, то обязательно содержал бы хотя бы одну из неустранимых конфигураций. Но остальная часть сети меньше по размеру, поэтому из минимальности контрпримера следует, что он может быть раскрашен в четыре цвета. А сводимость подразумевает, что исходная сеть тоже может быть раскрашена в четыре цвета. Это противоречие.

Исходя из этих посылок, Кемпе составил (причем совершенно верно) список неустранимых конфигураций: это точка с выходящими из нее тремя, четырьмя или пятью линиями (см. рис. 14). Кроме того, Кемпе корректно доказал, что первые две конфигурации сводимы, однако ошибся с доказательством сводимости третьей конфигурации. На самом деле она несводима. Отсюда предложение: замените эту нехорошую конфигурацию более длинным набором конфигураций, следя за тем, чтобы полный набор оставался неизбежным. Проделайте это таким образом, чтобы каждая конфигурация в наборе была сводимой. Иными словами, найдите неустранимой множество сводимых конфигураций. Если у вас получится, это будет означать, что вы доказали теорему о четырех красках.

 

 

Такого набора, вообще говоря, может и не быть в природе, но стратегия сама по себе заслуживает внимания, тем более что ничего лучшего никто предложить не сумел. Правда, у этого метода есть один недостаток. С одной стороны, чем длиннее список конфигураций, тем больше шансов на то, что они действительно неизбежны, а это хорошо. С другой стороны, чем длиннее список, тем меньше вероятность того, что каждая конфигурация в нем окажется сводимой; а если это не так, то все доказательство рушится. Эта опасность становится тем острее, чем больше в списке конфигураций, а это плохо. С третьей стороны, более длинный список предоставляет больше возможностей для выбора сводимых конфигураций, и это хорошо. С четвертой — он увеличивает объем работы, необходимый для доказательства сводимости, и это плохо. А с пятой стороны, хороших способов сделать это просто не существовало.

Именно такие препятствия делают великие задачи великими.

Итак, в течение какого-то времени события развивались так: осаждающим удавалось иногда отбить от стены камешек, но это никак не сказывалось на ней.

Быстрый переход