Доказательство этого момента я поместил в примечание, чтобы не прерывать ход мысли. Этот факт дает нам рычаг, необходимый для того, чтобы разбить задачу на более мелкие подзадачи. Рассмотрим гипотетический минимальный контрпример для теоремы о шести красках. Это сеть, которую невозможно раскрасить в шесть разных цветов, притом что любую меньшую сеть так раскрасить можно. А теперь я доказываю, что такая карта не может существовать. Согласно приведенному выше следствию из формулы Эйлера, в ней должна быть хотя бы одна точка, у которой пять или меньше соседей. Временно уберем эту точку и линии, соединяющие ее с соседями. В получившейся сети меньше точек, поэтому, исходя из минимальности контрпримера, ее можно раскрасить в шесть цветов. (Этот шаг, кстати говоря, мы не сможем сделать, если наш контрпример будет не минимальным.) А теперь вернем удаленную точку и ее линии на место. Эта точка имеет не более пяти соседей, так что шестой цвет для нее всегда найдется. Покрасим ее — и получим успешно раскрашенный в шесть цветов минимальный контрпример; но тогда получается, что это никакой не контрпример. Значит, минимальных контрпримеров для теоремы о шести красках не существует, а значит, теорема верна.
Это внушает оптимизм. До сих пор, насколько нам известно, для раскраски некоторых карт могло потребоваться 20 цветов, или 703, или несколько миллионов. Теперь мы знаем, что такие карты не более реальны, чем горшок золота под концом радуги. Мы знаем, что конкретного ограниченного числа красок точно хватит на любую карту. Это настоящий триумф метода минимальных контрпримеров. Математики, посмотрев на него, взялись за дело с еще большим энтузиазмом, надеясь усилить аргументацию и постепенно заменить шесть красок на пять, а если повезет, и на четыре.
Юристы иногда тоже интересуются математическими задачами. Адвокат по имени Альфред Кемпе присутствовал на том заседании, где Кейли упомянул задачу о четырех красках. В свое время он под руководством Кейли изучал математику в Кембридже, и за годы его интерес к этой науке нисколько не ослаб. Не прошло и года после заседания, а Кемпе уже убедил себя, что ему удалось справиться с задачей. Свое решение он опубликовал в 1879 г. в недавно основанном журнале American Journal of Mathematics. Еще через год он опубликовал упрощенное доказательство, где были исправлены некоторые ошибки, присутствовавшие в первом. Вот как он подошел к вопросу: «Очень небольшое изменение в части карты может привести к необходимости перекрашивать ее целиком. В результате достаточно сложного поиска мне удалось отыскать слабое звено, которое позволило одержать победу».
Я изложу идеи Кемпе в терминах двойственной сети. Опять же он начал с формулы Эйлера и следующего из нее вывода о существовании точки с тремя, четырьмя или пятью соседями. (Точка с двумя соседями лежит на линии и никак не влияет на структуру сети или карты: на нее можно просто не обращать внимания.)
Если существует точка с тремя соседями, то процедуру, которую я использовал для доказательства теоремы о шести красках, можно применить и к четырехкрасочному варианту. Удаляем саму точку и линии, которые в ней сходятся, раскрашиваем в четыре краски результат, возвращаем точку и линии на место и окрашиваем ее в оставшийся свободным цвет. Поэтому мы можем считать, что точки с тремя соседями не существует.
Если существует точка с четырьмя соседями, то вышеописанная методика не срабатывает, потому что при возвращении точки свободного цвета может и не оказаться. Кемпе придумал хитрый способ обойти это препятствие: он предложил так же точно удалить точку, но после этого поменять расцветку получившейся меньшей карты так, чтобы два из четырех ее бывших соседей получили один и тот же цвет. После такой модификации у соседей удаленной точки окажется не больше трех цветов — и в нашем распоряжении окажется свободный четвертый. Основная идея перекраски схемы по Кемпе заключается в том, что две соседние точки должны быть разных цветов — скажем, синего и красного, а еще в схеме используются зеленый и желтый. |