Изменить размер шрифта - +
Возьмем произвольную карту (см. рис. 10 слева). Чтобы представить ее в виде сети, поставим в каждой области по точке (см. рис. 10 в середине). Там, где две области имеют общий участок границы, соединим соответствующие точки линией, проходящей через этот участок. Если две области имеют несколько общих участков границы, проведем через каждый по отдельной линии. Проделаем все это для всех областей и всех участков границы так, чтобы линии не пересекались друг с другом и не имели самопересечений, а встречались только в точках. Затем выбросим первоначальную карту и оставим себе только точки и линии. Это двойственная сеть — двойник нашей карты (см. рис. 10 справа).

 

 

Слово «двойственный» используется потому, что при этой процедуре области, линии и точки (пересечения областей) превращаются в точки, линии и области. Область на карте соответствует точке двойственной сети. Участок границы на карте соответствует линии двойственной сети; не той же самой линии, а линии, которая пересекает границу и связывает соответствующие точки. Точка, в которой на карте сходятся три или больше областей, соответствует области двойственной сети, ограниченной со всех сторон линиями. Так что двойственная сеть — сама по себе карта, поскольку линии здесь ограничивают области; кроме того, оказывается, что двойственной схемой к двойственной схеме является первоначальная карта плюс-минус кое-какие технические подробности, исключающие ненужные точки и линии.

Рассматривая двойственную сеть, задачу о пяти принцах можно сформулировать иначе: можно ли соединить пять точек на плоскости непересекающимися линиями? Ответ — нет, а ключ к нему — формула Эйлера, согласно которой, если карта на плоскости состоит из F участков (областей), E ребер (линий) и V узлов (точек), то F + V — E = 2. Здесь остальная плоскость, оставшаяся вне сети, считается одной большой областью. Эта формула в свое время стала первым указанием на то, что топологические вопросы достойны рассмотрения. Она вновь появится в главе 10.

Доказательство того, что задача о пяти принцах не имеет решения, начинается с предположения о том, что такое решение существует, и это приводит к противоречию. Любое решение должно иметь число точек V = 5. Поскольку каждая пара точек соединяется линиями, а точек у нас 10 пар, то E = 10. Тогда по теореме Эйлера F = E — V + 2 = 7. Области двойственной сети ограничены замкнутыми петлями линий, и каждую пару точек соединяет только одна линия, поэтому каждая из петель должна содержать по крайней мере три линии. Если областей семь, то линий получается по крайней мере 21… Правда, каждая из них считается дважды, поскольку разделяет две области. Так что линий по крайней мере 10,5. Число линий должно быть целым, значит, на практике у нас должно быть по крайней мере 11 линий. Однако мы уже знаем, что линий у нас 10. Это логическое противоречие доказывает, что такой сети не существует. Царь не сможет разделить свои земли так, как ему хочется.

В подобных рассуждениях обнадеживает то, что элегантные топологические методы позволяют нам доказывать интересные и неожиданные факты о картах. Однако, вопреки распространенному мнению, которое де Морган, судя по всему, разделял, невозможность решения задачи о пяти индийских принцах не доказывает теорему о четырех красках. Доказательство может быть неверным, даже если само умозаключение верно, или по крайней мере никому не известно о его неверности. Если где-то в предполагаемом доказательстве мне встретится треугольник с четырьмя сторонами, я прекращу читать, поскольку это доказательство неверно. При этом не имеет значения, что происходит в нем позже или какой из этого делается вывод. Наш ответ на загадку индийских принцев показывает лишь, что один из способов опровержения теоремы о четырех красках не работает. Однако из этого не следует, что не может работать какой-нибудь другой способ.

Быстрый переход