Изменить размер шрифта - +
 8, а он доказывает лишь, что меньше, чем четырьмя красками, не обойдешься.

Ответ Гамильтона был краток: «Я вряд ли займусь в ближайшее время вашим “кватернионом” красок». В то время Гамильтон работал над алгебраической системой, которой суждено было на всю жизнь стать его пунктиком и любимым коньком. Это система, аналогичная комплексным числам, но включающая четыре типа чисел вместо двух (действительные и мнимые) в комплексной системе. Свои числа он называл «кватернионами». Предложенная им система до сих пор сохраняет свое значение в математике. Мало того, сегодня ее роль, вероятно, более важна, чем во времена Гамильтона. Но высот, о которых мечтал автор, она так и не достигла. Гамильтон просто пошутил в академическом стиле, употребив слово «кватернион» по отношению к четырем краскам. Долгое время действительно казалось, что между его системой и задачей о четырех красках нет никакой связи. Однако задачу можно переформулировать так, что она становится утверждением о кватернионах, так что Гамильтон, сам того не желая, попал в яблочко.

Де Морган, потерпев неудачу в поиске доказательства, рассказал о задаче всем своим знакомым математикам в надежде на то, что кто-нибудь сможет предложить полезную идею. В конце 1860-х гг. американский логик, математик и философ Чарльз Пирс заявил, что нашел решение задачи о четырех красках, а также ответы на аналогичные вопросы о картах на более сложных поверхностях. Предполагаемое доказательство так и не было опубликовано, но вряд ли доступные ему методы были адекватны задаче.

Хотя в задаче о четырех красках говорится вроде бы о картах, сама она не имеет применения в картографии. Практика раскраски карт отражает в основном политические различия, и если при этом соседние регионы должны иметь один цвет, то их и красят одинаково. Смысл этой задачи лежит в области чистой математики — новой области, которая тогда только начала развиваться — топологии. Это «геометрия на резиновом листе», в которой фигуры можно непрерывно деформировать любым способом. Но даже там задача о четырех красках не укладывалась в основное русло исследований, а представлялась всего лишь диковинкой.

 

 

Одним из пионеров топологии был Август Мёбиус, известный сегодня благодаря своей односторонней ленте (см. рис. 9). Модель такой ленты несложно изготовить: для этого нужно взять полоску бумаги, свернуть ее в кольцо, похожее на короткий толстый цилиндр, повернуть один из концов на 180° и склеить концы. Однажды друг Мёбиуса лингвист Бенджамин Вейске загадал ему загадку: может ли индийский царь разделить свое царство на пятерых сыновей так, чтобы часть, принадлежащая одному принцу, имела границу ненулевой длины с частями всех остальных? Мёбиус задал эту загадку своим студентам в качестве упражнения, но на следующей лекции извинился за то, что попросил их сделать невозможное. Подразумевалось, что он может доказать невозможность ее решения.

Эту загадку трудно представить геометрически, поскольку формы отдельных частей могут, в принципе, быть очень сложными. Для успешного продвижения в решении этой задачи следует ввести серьезное упрощение: сказать, что существенно только то, какие регионы граничат и как их общие границы расположены относительно друг друга. Эта топологическая информация не зависит от конкретных форм и может быть представлена в четкой и простой форме, известной как граф, или в наши дни — сеть (это более выразительный термин).

Сеть — чрезвычайно простое понятие: набор вершин (они обозначаются точками), некоторые из которых связаны ребрами (обозначаются линиями). Возьмем произвольную карту (см. рис. 10 слева). Чтобы представить ее в виде сети, поставим в каждой области по точке (см. рис. 10 в середине). Там, где две области имеют общий участок границы, соединим соответствующие точки линией, проходящей через этот участок.

Быстрый переход