|
Еще у него было преимущество благодарной памятливости. Он не забывал одной старой конструктивной догадки Эйнштейна, и это ему помогло.
В том же 26–м году удостоились, наконец, крещения световые кванты — эйнштейновские частицы света: физико–химик Дж. Ньютон Льюис назвал их фотонами. И это имя сразу укоренилось. Окончание «-он» хорошо подчеркнуло их корпускулярность — по сходству с микрокрупицами вещества, электроном и протоном. Подчеркнуть надо было именно корпускулярность, ибо на протяжении тех двадцати лет, что они уже существовали в картине микромира, их волновая — электромагнитная — природа ни у кого сомнений не вызывала. И Эйнштейн должен был с самого начала, впервые заговорив о них в 1905 году, дать ответ на естественно возникавший вопрос: если свет состоит из частиц, то о чем ведут рассказ электромагнитные волны?
Не обойтись без повторения: длины этих волн, или частоты колебаний, рассказывали об энергии каждого кванта. А впадины и горбы, или амплитуды электромагнитных волн? О чем рассказывали они, если от них зависела яркость — интенсивность — света? Ответ был прост и логичен: там, где яркость больше, там больше квантов — там их плотность выше. Об этом и говорит высота — амплитуда — электромагнитных волн.
Совершенно тот же вопрос волновал теперь Макса Борна: о чем ведут рассказ пси–волны с их впадинами и горбами, раз уж с этими волнами связано поведение частиц? Пришедшая на память мысль Эйнштейна подсказала ответ. И Макс Борн потом не раз с благодарностью вспоминал об этом.
Кажется, дело вполне заурядное — каждый теоретик держит в памяти то, что было сделано на ту же тему до него. Да, но надо было понять, что мысль Эйнштейна отражала ту же тему. А это не лежало на поверхности. Совсем напротив. Ведь ничего не получалось из стремления Шредингера увидеть в частицах некие кванты, сотканные из его пси–волн. Никаких «псионов» — в параллель с фотонами — не могло существовать. И потому в мысли Эйнштейна о роли горбов и впадин электромагнитной волны еще надо было усмотреть полезную подсказку для совсем другого по своей природе случая. А угадав эту подсказку, следовать ей без опрометчивости, дабы получить свой ответ на очень похожий вопрос.
Простейшим выглядел такой ответ: там, где поднимается гребень пси–волны, там и находится в данный момент частица. Но работала Эйнштейнова подсказка: а почему обязательно там и только там; разве в тех местах, где проходит не горб, а скат электромагнитной волны, совсем нет света? В таких местах его яркость меньше, однако же фотоны есть и там. Их меньше, но они есть. Отчего же не предположить, что и на скате пси–волны можно застать электрон? (Или, разумеется, любую другую микрочастицу, чье поведение изучается на сей раз .)
Появляется даже искушение подумать так: на гребнях пси–волны самой плоти электрона больше, а на скатах — меньше. Она, эта плоть, распределена — размазана — по всему пространству, где проходит пси–волна, описывающая поведение электрона: где горб — погуще, где скат — пожиже. Но тогда исчезает электрон как частица!
Недаром такому соблазну поддался все тот же Шредингер: идею волновых пакетов он заставлял служить подобной картине расплывшегося по всему атому электрона. «В этом я не мог ему следовать», — говорил Макс Борн.
Он следовал Эйнштейну, а Эйнштейн не размазывал световой квант по всей электромагнитной волне, ибо тогда незачем было бы и разговаривать о частицах света.
Нет, электрон как целое можно застать и там, где у пси–волны гребень, и там, где у нее скат. А «больше» и «меньше» относятся не к корпускулярной плоти электрона, а к его поведению: где у пси–волны амплитуда выше, там больше шансов быть электрону, а где амплитуда ниже, там и шансов меньше. Эти шансы равны нулю лишь там, где пси–волна сходит на нет: вот там электрону не бывать — там вероятность застать его нулевая. |