Изменить размер шрифта - +
Стоит чуть продолжить условное сравнение квадратных матриц с турнирными таблицами, чтобы это отчасти прояснилось.

Надо сыграть матч, дабы проставить в таблице определенный счет. Есть ли смысл в утверждении, что он существовал еще до игры? До игры существовала лишь перспектива любых исходов. Только одни были менее вероятными, а другие — более вероятными. Но ничего категорически однозначного не предрек бы никто, даже компьютеры, которым прогнозисты оставляют право на ошибку в сносных пределах.

Не так ли и в механике наблюдаемых величин? Надо сыграть матч — провести измерение, чтобы наблюдаемая величина стала наблюденной. На языке диалектической логики: чтобы возможное превратилось в действительное. А до этого решительно ничего однозначно точного вычисления не говорят.

Соблазнительно думать, что они, измеренные значения, допустим, координаты и скорости электрона, реально существовали и до измерения. Соблазнительно, но простодушно. Убежденность в этом не имеет физического смысла. Не найти ответа на скромный вопрос: а откуда вам это известно?

Естественно, в механике наблюдаемых величин, как и во всей микрофизике, нет места сомнению, что электрон существует до и независимо от нашего наблюдения (в противном случае не о чем было бы разговаривать и незачем было бы затевать измерения). Но без измерения квантовая механика откажется, например, точно судить о местоположении электрона.

Негодующе оспаривать этот отказ — дело безрадост ное. И бесплодное. Да ведь и вправду: электрон — не классическая корпускула, а частица–волна, со всеми вытекающими из этого факта и уже понятными нам, «неприятными» последствиями. (И неважно, что автору механики наблюдаемых величин не нравился этот двойственный образ!)

6

Двадцать с лишним лет спустя, уже после второй мировой войны в 1949 году, группа наших физиков во главе с Валентином Александровичем Фабрикантом поставила красивый эксперимент.

Еще прежде в лабораториях не раз проводился простой опыт: непроницаемый экран с маленьким отверстием — за экраном фотопластинка, — сквозь дырочку в экране на нее устремляется прямо летящий пучок электронов — исследуется почернение пластинки. Что получится?

Классически, следовало ожидать, что появится черное пятнышко прямо напротив отверстия в экране, и только. Когда бы электроны были обычными шариками, ничего другого не могло бы произойти. С небольшим разбросом они падали бы на одно и то же место.

Физики–квантовики ожидали появления иной картины, гораздо более интересной. За отверстием должна была проявиться волнообразность поведения проскочивших на свободу электронов. На пластинке следовало запечатлеться картине пересечения электронной волны с плоскостью эмульсии. Там, где на это пересечение придутся гребни волны, пластинка засветится, а там, где нулевые амплитуды, почернения не будет. В общем, от черного пятнышка посредине — напротив отверстия — должны расходиться чередующиеся светлые и темные кольца.

Так оно и получилось!

Но даже такие броские опыты не поколебали сомневающихся и не избавили идею вероятностного мира от хождения по мукам, начавшегося в 26–м году. И не один Эйнштейн обрекал ее на эти муки. А были они, в сущности, испытанием на прочность.

Среди многих сомнений очень долгоживущим явилось такое: а не есть ли вероятностная картина распределения зачерненных мест от падения электронов свойство их пучка — их громадного по численности потока, а вовсе не каждого электрона в отдельности?

Наши экспериментаторы решили в 49–м году провести опыт с отверстием в экране совсем по–другому, чем это делалось раньше.

Они пустили электроны не потоком, а поочередно. Не толпою, а гуськом. Пусть каждый электрон, решили они, проходит через отверстие и падает на экран независимо от других. Если и на сей раз прорисуется на пластинке волновая картина, не останется экспериментальных сомнений, что свойства пучка тут ни при чем.

Быстрый переход