Изменить размер шрифта - +
И ведь как все сложилось: он, Макс Борн, преданно следовал за ним, за Эйнштейном, а когда успешно дошел до цели, вдруг увидел, что тот отвернулся.

Идея вероятностного мира начинала хождение по мукам…

5

А расшифровка второй загадки — странностей умножения матриц — не стала заслугой кого–нибудь одного. Но, по–видимому, больше других для этого сделал Нильс Бор.

Ни в беседах ветеранов с историками, ни в их мемуарах, ни в сочинениях самого Бора не встречается упоминаний об его первой реакции на нежданно–негаданную формулу АВ не равняется ВA… Меж тем никто, включая и его самого, любившего такие психологические подробности былого, не упустил бы случая упомянуть об этой реакции, если бы и он вслед за Гейзенбергом, Борном, Дираком тоже испытал бы растерянность или смущение, когда осенью 25–го года впервые эту формулу увидел. Зато хвалу математике, все по–новому и по–новому помогающей физикам идти вперед, он провозгласил тогда же.

По–видимому, он действительно сразу прочитал тот ребус.

…Ход его мыслей уже не узнать. И это еще один из бесчисленных поводов пожалеть, что в 1962 году историки слишком поздно пришли к нему для бесед об эпохе бури и натиска, в своем внезапно оборвавшемся рассказе он успел дойти только до 1922 года…

Для удобопонятности возможна такая схема.

Прочитав нелепую формулу, он сразу отверг очевидное: A и B не могли быть в гейзенберговском умножении числами. Числа неизменно давали бы одно и то же произведение, как ими ни верти: АВ всегда равнялось бы ВА, Совсем иное дело, если А и В не сами наблюденные величины, а операции над наблюдаемыми. Почему бы операциям разного толка давать один и тот же результат, если они проводятся в разной последовательности?

Юмористически, скажем, так: пусть операция А — наркоз, а операция В — удаление зуба; тогда прямая их очередность АВ — утешительна, а обратная ВА — ужасна; заранее, без проверки на опыте, ясно, что AB ≠ BA, не правда ли?

Самые естественные операции над наблюдаемыми величинами в микромире — это их наблюдение. Иначе — измерения. Но ничто нельзя измерить в незримом и неслышном мире атома, не получив из него ответного сигнала на свой лабораторный вопрос. А сигнал требует затрат энергии и времени. Короче — действия. Наислабейший из возможных, наименьший сигнал — это планковский квант действия h. Как, однако, он ни мал, а в масштабах микромира его величина реально ощутима, о чем говорено тут было уже не раз.

Отослав даже такой ничтожный сигнал, электрон или атом меняют свое состояние. Измерение вторгается в их бытие. Всякий раз на свой лад. Так можно ли изумляться, что при двух операциях А и В далеко не безразличен их порядок, какая — сначала, какая — потом? Это столь несомненно, что обязательно должно было найти для себя выражение в истинной механике микромира. Вот и нашло: АВ ≠ ВА.

Бор издавна размышлял над проблемой измерений в микромире.

Чисто лабораторно–техническая в классической физике, эта проблема вдруг окрасилась философски–теоретически в физике квантовой. А все потому, что микромир, совсем как принцесса в сказке Андерсена, чувствует горошину сквозь толщу дюжин перин. Измерения не проходят безнаказанно для измеряемого.

Это вносит прежде неизвестные черты в само устройство нашего знания. Вот как оборачивается проникновение в глубины материи…

Бору радостно, а не тревожно было всматриваться в формулу неперестановочности умножения матриц. Снова совсем, как по Андерсену: из гадкого утенка она превращалась на глазах в стройного лебедя. Или прозаически: из нелепости — в ручательство за надежность найденного Гейзенбергом пути.

И Гейзенбергу потом не раз доводилось улыбаться со смесью гордости и смущения, когда он вспоминал, как утешил себя на Гельголанде: «К счастью, мне не понадобится такое умножение, к счастью, это не очень существенно…»

Конечно, и в матричном варианте механики микромира, как и в волновом, глубинные законы природы раскрывали свою вероятностную суть.

Быстрый переход